精英家教网 > 初中数学 > 题目详情
如图1,Rt△ABC中,∠A=90°,tanB=,点P在线段AB上运动,点Q、R分别在线段BC、AC上,且使得四边形APQR是矩形.设AP的长为x,矩形APQR的面积为y,已知y是x的函数,其图象是过点(12,36)的抛物线的一部分(如图2所示).

(1)求AB的长;
(2)当AP为何值时,矩形APQR的面积最大,并求出最大值.
为了解决这个问题,孔明和研究性学习小组的同学作了如下讨论:
张明:图2中的抛物线过点(12,36)在图1中表示什么呢?
李明:因为抛物线上的点(x,y)是表示图1中AP的长与矩形APQR面积的对应关系,那么,(12,36)表示当AP=12时,AP的长与矩形APQR面积的对应关系.
赵明:对,我知道纵坐标36是什么意思了!
孔明:哦,这样就可以算出AB,这个问题就可以解决了.请根据上述对话,帮他们解答这个问题.
【答案】分析:(1)由于y是x的函数且过(12,36)点,即AP=12时,矩形的面积为36,可求出PQ的长,进而在直角三角形BPQ中得出BP的值,根据AB=AP+BP即可求出AB的长.
(2)与(1)类似,可先用AP表示出BP的长,然后在直角三角形BPQ中,表示出PQ的长;根据矩形的面积计算方法即可得出关于y,x的函数关系式.然后可根据得出的函数的性质求出矩形的最大面积以及此时对应的x的值.
解答:解:(1)当AP=12时,AP•PQ=36,
∴PQ=3,
又在Rt△BPQ中,tanB=

∴PB=4.
∴AB=16.

(2)若AP=x,则PB=16-x,PQ=(16-x),
∴y=(16-x)x,
整理得y=-(x-8)2+48.
∴当x=8时,y最大值=48.
点评:本题结合三角形、矩形的相关知识考查了二次函数的应用,用数形结合的思路求得相应的函数关系式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•和平区二模)如图,在Rt△ABC中,∠BAC=90°,AB=6,AM为∠BAC的平分线,CM=2BM.下列结论:
①tan∠MAC=
2
2
;②点M到AB的距离是4;③
AC
CM
=
BC
CA
;④∠B=2∠C;⑤
CM
AB
=
2

其中不正确结论的序号是
①③④⑤
①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•遵义)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为
2
π
π
2
π
π
(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=9cm,则AB的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.
(1)求证:AC是⊙O的切线;
(2)若DE=2,BD=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•嘉定区二模)如图,在Rt△ABC中,∠ACB=90°,点D在AC边上,且BC2=CD•CA.
(1)求证:∠A=∠CBD;
(2)当∠A=α,BC=2时,求AD的长(用含α的锐角三角比表示).

查看答案和解析>>

同步练习册答案