精英家教网 > 初中数学 > 题目详情

【题目】超市将某品牌的洗涤液按照进价提高50%后标价,再打八折销售,仍可获利30元.则这种商品的进价是_____元.

【答案】150.

【解析】

设这种商品的进价是x元,根据售价-进价=利润即可得出关于x的一元一次方程,解之即可得出结论.

.解:设这种商品的进价是x元,

根据题意得:0.8×(1+50%)x﹣x=30,

解得:x=150.

故答案为:150.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角. 其中正确的是(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若(m+3)x|m|2+5=0是关于x的一元一次方程,则m=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)|﹣2|﹣(2﹣π)0++(﹣2)3
(2)(﹣2x32(﹣x2)÷[(﹣x)2]3
(3)(x+y)2(x﹣y)2
(4)(x﹣2y+3z)(x+2y﹣3z)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.

(1)求∠ADE的度数;

(2)求证:DE=AD+DC;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,MBC边(不含端点BC)上任意一点,PBC延长线上一点,N∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME

正方形ABCD中,∠B=∠BCD=90°AB=BC

∴∠NMC=180°—∠AMN—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE

(下面请你完成余下的证明过程)

2)若将(1)中的正方形ABCD”改为正三角形ABC”(如图2,N∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

3)若将(1)中的正方形ABCD”改为边形ABCD…X”,请你作出猜想:当∠AMN=°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

1 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?
遇到这样的问题,我们可以先思考一下,从简单的情形入手.先计算下列各式的值:
(1)(x﹣1)(x+1)=;
(2)(x﹣1)(x2+x+1)=;
(3)(x﹣1)(x3+x2+x+1)=;
由此我们可以得到(x﹣1)(x99+x98+…+x+1)=;
请你利用上面的结论,完成下面两题的计算:
(1)299+298+…+2+1;
(2)(﹣3)50+(﹣3)49+…+(﹣3)+1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,点B(﹣2,2),过反比例函数y=(x0,常数k0)图象上一点A(﹣,m)作y轴的平行线交直线l:y=x+2于点C,且AC=AB.

(1)分别求出m、k的值,并写出这个反比例函数解析式;

(2)发现:过函数y=(x0)图象上任意一点P,作y轴的平行线交直线l于点D,请直接写出你发现的PB,PD的数量关系

应用:①如图2,连接BD,当PBD是等边三角形时,求此时点P的坐标;

②如图3,分别过点P、D作y的垂线交y轴于点E、F,问是否存在点P,使得矩形PEFD的周长取得最小值?若存在,请求出此时点P的坐标及矩形PEFD的周长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学5次数学小测验的成绩分别为(单位:分):90859095100,则该同学这5次成绩的众数是(  )

A.90 B.85 C.95 D.100

查看答案和解析>>

同步练习册答案