精英家教网 > 初中数学 > 题目详情
已知直线ln:y=-
n+1
n
x+
1
n
(n是不为零的自然数).当n=1时,直线l1:y=-2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线l2:y=-
3
2
x+
1
2
与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2,…,
依此类推,直线ln与x轴和y轴分别交于点An和Bn,设△AnOBn的面积为Sn
(1)求设△A1OB1的面积S1
(2)求S1+S2+S3+…+S6的值.
分析:(1)因为当n=1时,直线l1:y=-2x+1与x轴和y轴分别交于点A1和B1,所以分别令y=0,x=0,即可求出A1和B1的坐标,从而求出△A1OB1的面积S1
(2)要求S1+S2+S3+…+S6的值,需要找出Sn的规律,因为n=2时,y2=-
3
2
x+
1
2
,所以分别令y=0,x=0即可求出A2
1
3
,0),同理可求出A2,A3…所以推出当n=n时,yn=-
n+1
n
x+
1
n
,分别令y=0,x=0,即可求出An
1
n+1
,0),Bn(0,
1
n
),所以Sn=
1
2
×
1
n+1
×
1
n
,整理即可求出答案.
解答:解:(1)∵y1=-2x+1,
∴A1
1
2
,0),B1(0,1),
∴S1=
1
2
×
1
2
×1
=
1
4


(2)∵y2=-
3
2
x+
1
2

∴A2
1
3
,0),B2(0,
1
2

故S2=
1
2
×
1
3
×
1
2

∵y3=-
4
3
x+
1
3

∴A3
1
4
,0),B3(0,
1
3
),
故S3=
1
2
×
1
4
×
1
3


∵yn=-
n+1
n
x+
1
n

∴An
1
n+1
,0
),Bn(0,
1
n
),
故Sn=
1
2
×
1
n+1
×
1
n

1
n
×
1
n+1
=
1
n
-
1
n+1

∴S1+S2+…+S6=
1
2
1
1×2
+
1
2×3
+
1
3×4
+
+
1
6×7

=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
6
-
1
7
)]=
1
2
(1-
1
7
)=
3
7
点评:本题是一道推理性极强的题目,主要考查一次函数的基本的性质及特殊点的坐标,解题的关键是寻找规律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直线ln:y=-
n+1
n
x+
1
n
(n是不为零的自然数).当n=1时,直线l1:y=-2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线l2:y=-
3
2
x+
1
2
与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2;…依此类推,直线ln与x轴和y轴分别交于点An和Bn,S1+S2+…+S2009的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线lny=-
n+1
n
x+
1
n
(n是不为零的自然数).当n=1时,直线l1:y=-2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1,(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线l2y=-
3
2
x+
1
2
与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2;…依此类推,直线ln与x轴和y轴分别交于点An和Bn,设△AnOBn的面积为Sn.则△A1OB1的面积S1等于
 
;S1+S2+S3+S4+S5的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线ln:y=-
n+1
n
x+
1
n
(n是正整数).当n=1时,直线l1:y=-2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(O是平面直角坐标系的原点)的面积为s1;当n=2时,直线l2:y=-
3
2
x+
1
2
与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为s2,…,依此类推,直线ln与x轴和y轴分别交于点An和Bn,设△AnOBn的面积为Sn
(1)求△A1OB1的面积s1
(2)求s1+s2+s3+…+s2008的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线ln:y=-
n+1
n
x+
1
n
(n是正整数).当n=1时,直线l1:y=-2x+1与 x轴和y轴分别交于点A1和B1,设△A1OB1(O是平面直角坐标系的原点)的面积为s1;当n=2时,直线l2:y=-
3
2
x+
1
2
与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为s2,…,依此类推,直线ln与x轴和y轴分别交于点An和Bn,设△AnOBn的面积为Sn
(1)求△A1OB1的面积s1
(2)求s1+s2+s3+…+s2011的值.

查看答案和解析>>

同步练习册答案