精英家教网 > 初中数学 > 题目详情

【题目】如图,有一张矩形纸条ABCDAB5cmBC2cm,点MN分别在边ABCD上,CN1cm.现将四边形BCNM沿MN折叠,使点BC分别落在点B'C'上.当点B'恰好落在边CD上时,线段BM的长为_____cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm

【答案】

【解析】

第一个问题证明BMMBNB,求出NB即可解决问题.第二个问题,探究点E的运动轨迹,寻找特殊位置解决问题即可.

如图1中,

∵四边形ABCD是矩形,

ABCD

∴∠1=∠3

由翻折的性质可知:∠1=∠2BMMB

∴∠2=∠3

MBNB

NBcm),

BMNBcm).

如图2中,当点MA重合时,AEEN,设AEENxcm

RtADE中,则有x222+4x2,解得x

DE4cm),

如图3中,当点M运动到MBAB时,DE的值最大,DE5122cm),

如图4中,当点M运动到点B落在CD时,DB(即DE)=51=(4)(cm),

∴点E的运动轨迹EE′→E,运动路径=EE′+EB2+2﹣(4)=()(cm).

故答案为,().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,弦CDAB,垂足为H,连结AC,过上一点E作EGAC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.

(1)求证:ECF∽△GCE;

(2)求证:EG是O的切线;

(3)延长AB交GE的延长线于点M,若tanG=,AH=,求EM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数ymx+nm0)的图象与y轴交于点C,与反比例函数yk0)的图象交于AB两点,点A在第一象限,纵坐标为4,点B在第三象限,BMx轴,垂足为点MBMOM2

1)求反比例函数和一次函数的解析式.

2)连接OBMC,求四边形MBOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABCD.若DAB30°,则菱形ABCD的面积与正方形ABCD的面积之比是(  )

A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.

1)求甲、乙两个车间各有多少名工人参与生产?

2)为了提前完成生产任务,该企业设计了两种方案:

方案一 甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.

方案二 乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.

设计的这两种方案,企业完成生产任务的时间相同.

①求乙车间需临时招聘的工人数;

②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B

1)求该抛物线的函数表达式.

2)当球运动到点C时被东东抢到,CDx轴于点DCD2.6m

①求OD的长.

②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E41.3).东东起跳后所持球离地面高度h1m)(传球前)与东东起跳后时间ts)满足函数关系式h1=﹣2t0.52+2.70≤t≤1);小戴在点F1.50)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2m)与东东起跳后时间ts)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(性质探究)

如图,在矩形ABCD中,对角线ACBD相交于点OAE平分∠BAC,交BC于点E.作DFAE于点H,分别交ABAC于点FG

1)判断△AFG的形状并说明理由.

2)求证:BF=2OG

(迁移应用)

3)记△DGO的面积为S1,△DBF的面积为S2,当时,求的值.

(拓展延伸)

4)若DF交射线AB于点F,(性质探究)中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tanBAE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在由边长为1个单位长度的小正方形组成的8×9的网格中,已知△ABC的顶点均为网格线的交点.

1)在给定的网格中,画出△ABC关于直线AB对称的△ABC1

2)将△ABC1绕着点O旋转后能与△ABC重合,请在网格中画出点O的位置.

3)在给定的网格中,画出以点C为位似中心,将△ABC放大为原来的2倍后得到的△A2B2C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 在矩形纸片中, 分别是的中点, 分别在上, .沿折叠, 的对应点为点,将沿折叠, 的对应点为点,当四边形为菱形时, _______

查看答案和解析>>

同步练习册答案