【题目】从一个等腰三角形纸片的某角的顶点出发,能将其剪成两个等腰三角形纸片,则原等腰三角形纸片的底角为_______________.
【答案】36°或45°或72°或()°
【解析】
试题根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可得到∠C与∠A之间的关系,最后根据三角形内角和定理不难求解.
试题解析:(1)如图(1),
∵AB=AC,AD=BD=BC,
∴∠ABC=∠C=∠BDC,∠A=∠ABD,
∴∠BDC=2∠A,
∴∠ABC=2∠A,
∵∠A+∠ABC+∠C=180°,
∴5∠A=180°,
∴∠A=36°.
∴底角∠C=2∠A=72°;
(2)如图(2)
AD=BD,BC=CD,设∠A=β,则∠ABD=β,
∴∠1=2β=∠2,
∴∠C=3β,
∴7β=180°,
∴β=;
即∠C=×(180-)=,
∴原等腰三角形纸片的底角为72°或.
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AD∥BC,BC=2AD,点F、G分别是边BC、CD的中点,连接AF、FG,过点D作DE∥FG交AF于点E.
(1)求证:△AED≌△CGF;
(2)若梯形ABCD为直角梯形,∠B=90°,判断四边形DEFG是什么特殊四边形?并证明你的结论;
(3)若梯形ABCD的面积为a(平方单位),则四边形DEFG的面积为(平方单位).(只写结果,不必说理)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知点A(a,0),B(0,b),且a、b满足=0, □ABCD的边AD与y轴交于点E(0,2),且E为AD中点,双曲线经过C、D两点.
(1)求k的值;
(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;
(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.该地农业部门对2017年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下的统计表与统计图(如图):
每亩生产成本 | 每亩产量 | 油菜籽市场价格 | 种植面积 |
110元 | 130千克 | 3元/千克 | 500 000亩 |
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2017年该地全县农民冬种油菜的总获利是多少元?(结果用科学记数法表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 是半圆,连接AB,点O为AB的中点,点C,D在 上,连接AD,CO,BC,BD,OD.若∠COD=62°,且AD∥OC,则∠ABD的大小是( )
A.26°
B.28°
C.30°
D.32°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰Rt△ABC中,∠C=90°,D为AC上一点,连接BD,将线段BD绕点D顺时针旋转90°得到线段DE,DE与AB相交于点F,过点D作DG⊥AB,垂足为点G.若EF=5,CD=2 ,则△BDG的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形中,是上一动点,点在的延长线上,且平分,交于点.
(1)如图①,连接,求证: ;
(2)如图②,当时,求证: ;
(3)如图③,当时,若平分,求证: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,∠ACB=90°,点D、E在AB上,将△ACD、△BCE分别沿CD、CE翻折,点A、B分别落在点A′、B′的位置,再将△A′CD、△B′CE分别沿A′C、B′C翻折,点D与点E恰好重合于点O,则∠A′OB′的度数是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.
(1)求这条抛物线的表达式;
(2)联结AB、BC、CD、DA,求四边形ABCD的面积;
(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com