【题目】如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且=,连接GO并延长交⊙O于点F,连接BF
(1)求证:①AO=AG,②BF是⊙O的切线.
(2)若BD=6,求图形中阴影部分的面积.
【答案】(1)①见解析;②见解析;(2)S阴影=.
【解析】
(1)①先利用切线的性质判断出∠ACB=∠OEB,再用平行线结合弧相等判断出∠AOG=∠AGO,即可得出结论;
②先判断出△AOG是等边三角形,进而得出∠BOF=∠AOG=60°,进而判断出∠EOB=60°,得出△OFB≌△OEB,得出∠OFB=90°,即可得出结论;
(2)先判断出∠ABC=30°,进而得出OB=2BE,建立方程6+r=2r,继而求出AG=6,AB=18,AC=9,CG=3,再判断出△OGE是等边三角形,得出GE=OE=6,进而利用根据勾股定理求出CE=3,即可得出结论.
解:(1)证明:①如图1,连接OE,
∵⊙O与BC相切于点E,
∴∠OEB=90°,
∵∠ACB=90°,
∴∠ACB=∠OEB,
∴AC∥OE,
∴∠GOE=∠AGO,
∵=,
∴∠AOG=∠GOE,
∴∠AOG=∠AGO,
∴AO=AG;
②由①知,AO=AG,
∵AO=OG,
∴∠AO=OG=AG,
∴△AOG是等边三角形,
∴∠AGO=∠AOG=∠A=60°,
∴∠BOF=∠AOG=60°,
由①知,∠GOE=∠AOG=60°,
∴∠EOB=180°﹣∠AOG﹣∠GOE=180°﹣60°﹣60°=60°,
∴∠FOB=∠EOB,
∵OF=OE,OB=OB,
∴△OFB≌△OEB(SAS),
∴∠OFB=∠OEB=90°,
∴OF⊥BF,
∵OF是⊙O的半径,
∴BF是⊙O的切线;
(2)如图2,连接GE,
∵∠A=60°,
∴∠ABC=90°﹣∠A=30°,
∴OB=2BE,
设⊙O的半径为r,
∵OB=OD+BD,
∴6+r=2r,
∴r=6,
∴AG=OA=6,AB=2r+BD=18,
∴AC=AB=9,∴CG=AC﹣AG=3,
由(1)知,∠EOB=60°,
∵OG=OE,
∴△OGE是等边三角形,
∴GE=OE=6,
根据勾股定理得,CE=,
∴S阴影=S梯形GCEO﹣S扇形OGE=(6+3)×.
科目:初中数学 来源: 题型:
【题目】某校举行了“禁毒知识竞赛”活动,并随即抽查了部分同学的成绩,整理并制作成图表如下:
根据以上图表提供的信息,解答下列问题:
(1)请求出: , ,抽查的总人数为 人;
(2)请补全频数分布直方图;
(3)抽查成绩的中位数应落在 分数段内;
(4)如果比赛成绩在80分以上(含80分)为优秀,任意抽取一位同学,则成绩优秀的概率为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,点B的坐标为,过点B分别作x轴、y轴垂线,垂足分别是C,A,反比例函数的图象交AB,BC分别于点E,F.
(1)求直线EF的解析式.
(2)求四边形BEOF的面积.
(3)若点P在y轴上,且是等腰三角形,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点P在直线OD下方时,求面积的最大值.
(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示图案是我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为”赵爽弦图“.已知AE=4,BE=3,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取和时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移个单位得到该函数图象
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是上一点,连接AF交CD的延长线于点E.
(1)求证:△AFC∽△ACE;
(2)若AC=5,DC=6,当点F为的中点时,求AF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知双曲线y=与直线y=x相交于AB两点,点C(2,2)、D(﹣2,﹣2)在直线上.
(1)若点P(1,m)为双曲线y=上一点,求PD﹣PC的值;
(2)若点P(x,y)(x>0)为双曲线上一动点,请问PD﹣PC的值是否为定值?请说明理由;
(3)若点P(x,y)(x>0)为双曲线上一动点,连接PC并延长PC交双曲线另一点E,当P点使得PD﹣CE=2PC时,求P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com