精英家教网 > 初中数学 > 题目详情
如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF;
(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.

【答案】分析:(1)这两个三角形中,已知的条件有∠A=∠B=90°,那么只要得出另外两组对应角相等即可得出两三角形相似,因为∠DEA+∠FEB=180-90=90°,而∠ADE+∠DEA=90°,因此∠ADE=∠FEB,同理可得出∠BFE=∠AED,那么就构成了两三角形相似的条件;
(2)可用x表示出BE的长,然后根据(1)中三角形ADE和FEB相似可得出关于AD,AE,BE,BF的比例关系式,然后就能得出一个关于x,y的函数关系式.根据函数的性质即可得出y的最大值及相应的x的值.
解答:(1)证明:∵ABCD是正方形,
∴∠DAE=∠FBE=90°.
∴∠ADE+∠DEA=90°.
又∵EF⊥DE,∴∠AED+∠FEB=90°,
∴∠ADE=∠FEB,
∴△ADE∽△BEF.

(2)解:由(1)△ADE∽△BEF,AD=4,BE=4-x,得:
得:y=(-x2+4x)=[-(x-2)2+4]=-(x-2)2+1,
所以当x=2时,y有最大值,y的最大值为1.
点评:本题考查了正方形的性质,相似三角形的性质以及二次函数的应用等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图所示,E是正方形ABCD的边CD上一点,将△AED绕点A顺时针旋转90°,得到△AFB,则AE与AF有何关系?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图所示,ABCD是正方形,BE⊥BF,BE=BF,试判断AE与FC的位置关系,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,E是正方形ABCD的边BC延长线上的点,且BC=CE.
(1)四边形ACED是平行四边形吗?说明理由;
(2)如果AC=
2
,请求出四边形ACED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图所示,E是正方形ABCD中AD边上的中点,BD与CE交于点F.请你根据图形判断AF与BE的位置具有什么关系?并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,P是正方形ABCD的边CD上一点,∠BAP的角平分线交BC于Q,
试说明AP=DP+BQ.

查看答案和解析>>

同步练习册答案