精英家教网 > 初中数学 > 题目详情
7.如图,小明同学在将一张矩形纸片ABCD的四个角向内折起时,发现恰好能拼成一个无缝隙无重叠的四边形EFGH.于是他测量出EH=12cm,EF=16cm,根据这两个数据他很快求出了边AD的长,则边AD的长是(  )
A.12cmB.16cmC.20cmD.28cm

分析 利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.

解答 解:∵∠HEM=∠AEH,∠BEF=∠FEM,
∴∠HEF=∠HEM+∠FEM=$\frac{1}{2}$×180°=90°,
同理可得:∠EHG=∠HGF=90°,
∴四边形EFGH为矩形.
∴EH=FG,EH∥FG,
∴∠EHF=∠HFG,
∵∠AHE=∠EHF,∠CFG=∠HFG,
∴∠AHE=∠CFG,
∵∠A=∠C,
∴△AHE≌△CFG,
∴AH=CF,
∴AH=CF=FP,
∵HD=HP,
∴AD=AH+HD=PF+HP=HF,
∵HF=$\sqrt{E{H}^{2}+E{F}^{2}}$=$\sqrt{1{2}^{2}+1{6}^{2}}$=20,
∴AD=20cm,
故选C.

点评 本题是翻折变换问题,考查了学生对翻转、折叠矩形、三角形等知识的掌握情况,要熟知折叠前后图形的形状和大小不变,对应边和对应角相等;利用翻折的性质将相等的边转化为同一线段上,并利用勾股定理求出该线段的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.如图,直径为1个单位长度的圆上一点A在数轴上的坐标为-1,该圆沿数轴向右滚动2014周,A点到达位置A′处,则A′的坐标为2014π-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知关于x的方程x2-(k+1)x+$\frac{1}{4}$k2+1=0有两个实数根.
(1)求k的取值范围;
(2)若方程的两实数根分别为x1,x2,且x12+x22=6x1x2-15,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AB是⊙O的直径,点D是$\widehat{AE}$上一点,且∠BDE=∠CBE,BD与AE交于点F.
(1)求证:BC是⊙O的切线;
(2)若BD平分∠ABE延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.二次函数y=mx2-2x+1,当x$<\frac{1}{3}$时,y的值随x值的增大而减小,则m的取值范围是0<m≤3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.阅读下面的解题过程,并在横线上补全推理过程或依据.
已知:如图,DE∥BC,DF、BE分别平分∠ADE、∠ABC.
试说明∠FDE=∠DEB.
解:∵DE∥BC(已知)
∴∠ADE=∠ABC.(两直线平行,同位角相等)
∵DF、BE分别平分∠ADE、∠ABC (已知)
∴∠ADF=$\frac{1}{2}$∠ADE
∠ABE=$\frac{1}{2}$∠ABC(角平分线定义)
∴∠ADF=∠ABE(等量代换)
∴DF∥BE.(同位角相等,两直线平行)
∴∠FDE=∠DEB.(两直线平行,内错角相等)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:$\sqrt{18}$+$\sqrt{\frac{9}{2}}$-${(π-\sqrt{2})}^{0}$-|1-$\sqrt{2}$|+${(\frac{1}{2})}^{-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,四边形ABCD是平行四边形,延长BA到点E,使AE=AB,联结ED、EC、AC.添加一个条件,能使四边形ACDE成为菱形的是(  )
A.AB=ADB.AB=EDC.CD=AED.EC=AD

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在数轴上表示-1的点与表示$\sqrt{2}$的点的距离$\sqrt{2}$+1.

查看答案和解析>>

同步练习册答案