【题目】二次函数的图像与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C点的坐标;
(2)求△ABC的面积.
【答案】(1)A(2,0)、B(2,0)或A(2,0)、B(2,0);C点的坐标为(0,2);(2) S△ABC=4.
【解析】
(1)令y=0,解关于x的一元二次方程,即可得出点A、B的坐标,令x=0求出y值,由此即可得出点C的坐标;
(2)利用两点间的距离公式可得出AB的长度,结合OC=2,再根据三角形的面积公式即可得出结论.
(1)令y=0,则x2﹣2=0,解得:x1=﹣2,x2=2,∴A(﹣2,0)、B(2,0)或A(2,0)、B(﹣2,0);
令x=0,得y=﹣2,∴C点的坐标为(0,﹣2).
(2)∵A(﹣2,0)、B(2,0)或A(2,0)、B(﹣2,0),且C(0,﹣2),∴AB=4,OC=2.
S△ABCABOC4×2=4.
科目:初中数学 来源: 题型:
【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为m,DC的长为m。
(1)求与之间的函数关系式;
(2)根据实际情况,对于(1)式中的函数自变量能否取值为4m,若能,求出的值,若不能,请说明理由;
(3)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班数学兴趣小组经过市场调查,整理出某种商品在第天的售价与销量的相关信息如下表:
观察表格:根据表格解答下列问题:
0 | 1 | 2 | |
1 | |||
-3 | -3 |
(1)__________._____________.___________.
(2)在下图的直角坐标系中画出函数的图象,并根据图象,直接写出当取什么实数时,不等式成立;
(3)该图象与轴两交点从左到右依次分别为、,与轴交点为,求过这三个点的外接圆的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).
(1)求证:四边形EHFG是平行四边形;
(2)若∠α=90°,AB=9,AD=3,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.
(1)若围成的面积为180m,试求出自行车车棚的长和宽;
(2)能围成的面积为200m自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.
(1)求与之间的函数关系式,并写出自变量的取值范围;
(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).
(1)当直线AB经过点C时,点O到直线AB的距离是 ;
(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数与x轴交于点B和点A(-1,0),与y轴交于点C,与一次函数交于点A和点D.
1.求出的值;
2.若直线AD上方的抛物线存在点E,可使得△EAD面积最大,求点E的坐标;
3.点F为线段AD上的一个动点,点F到(2)中的点E的距离与到y轴的距离之和记为d,求d的最小值及此时点F的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com