因牛n头,每头卖n元,故共卖得n2元.
令a表示n的十位以前的数字,b表示n的个位数字.即n=10a+b,于是n2=(10a+b)2=100a2+ 20ab+b2=10×2a(5a+b)+b2. 因甲先取10元,而乙最后一次取钱时不足10元,所以n2中含有奇数个10元,以及最后剩下不足10元. 但10×2a(5a+b)中含有偶数个10元,因此b2中必含有奇数个10元,且b<10,所以b2只可能是1、4、9、16、25、36、49、64、81,而这九个数中,只有16和36含有奇数个10,因此b2只可能是16或36,但这两个数的个位数都是6,这就是说,乙最后所拿的是6元(即剩下不足10元). 所以甲比乙多拿了4元,为了平均分配甲必须补给乙2元.。 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com