精英家教网 > 初中数学 > 题目详情
如图1,点A在y轴的正半轴上,以OA为边作等边三角形AOC.
(1)点B是x轴正半轴上的一个动点,如图1当点B移动到点D的位置时,连接AD,请你在第一象限内确定点E,使△ADE是等边三角形(保留作图痕迹,不写作法和证明).
(2)在(1)的条件下,在点B的运动过程中,∠ACE的大小是否发生变化?若不变,求出其度数;若变化,请说明理由.
(3)如图2,把你在(1)中所作的正△ADE绕点A逆时针旋转,使点E落在y轴的正半轴上E′的位置,得到正△AE′D′,连接CE′、OD′交于点F.现在给出两个结论:①AF平分∠CAD′;②FA平分∠OFE′,其中有且只有一个结论是正确的,请你判断哪个结论是正确的,并进行证明.
分析:(1)分别以A和D为圆心,AD为半径画弧,取在第一象限的交点E,连接AE、DE即可;
(2)根据等边三角形性质得出AD=AE,AO=AC,∠OAD+∠CAD=∠CAE+∠CAD=60°,推出∠OAD=∠CAE,根据SAS证△ACE≌△AOD,推出∠ACE=∠AOD即可;
(3)②FA平分∠OFE′是正确的,根据等边三角形性质推出△CAE′≌△OAD′,推出AN=AM,根据角平分线性质推出即可;根据等腰三角形的性质推出∠FAE′≠∠FAO,根据等边三角形性质推出∠E′AD′=∠CAO,即可推出①是错误的.
解答:(1)解:如下图:分别以A和D为圆心,AD为半径画弧,取在第一象限的交点E,连接AE、DE,则三角形ADE是所求的等边三角形.
(2)∠ACE的大小不发生变化,总等于90°,
理由:
根据题意,有AD=AE,AO=AC,
∠OAD+∠CAD=∠CAE+∠CAD=60°,
∴∠OAD=∠CAE,
在△ACE和△AOD中
AE=AD
∠EAC=∠OAD
AO=AC

∴△ACE≌△AOD(SAS)
∴∠ACE=∠AOD=90°,
即∠ACE的大小不发生变化,总等于90°.

(3)解:第二个结论②FA平分∠OFE′是正确的,
理由是:过A分别作AM⊥OD′于M,AN⊥CE′于N,
在△OAD′和△CAE′中
AE′=AD′
∠E′AC=∠D′AO
AO=AC

∵△OAD′≌△CAE′(SAS),
∴CE′=OD′,
∴AM=AN(全等三角形的对应边上的高相等),
∵AN⊥CE′,AM⊥OD′,
∴∠AFN=∠AFM,
即FA平分∠OFE,∴②正确;
∵FE和OF不相等,
∴∠FAE不一定等于∠FAO,
∵∠EAD′=∠CAO=60°,
∴∠D′AF不一定等于∠FAC,
∴①错误;
即只有②正确.
点评:本题考查了对等边三角形的性质,坐标与图形性质,角平分线定义,作图-复杂图形,旋转性质,全等三角形的性质和判定等知识点的应用,此题综合性比较强,有一点难度,主要培养学生分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图1,点O1在x轴的正半轴上,⊙O1与x轴交于C、D两点,半径为4的⊙O与x轴的负半轴交于G点.⊙O与⊙O1的交点A、B在y轴上,设⊙O1的弦AC的延长线交⊙O于F点,连接GF,且AF=2
2
GF
(1)求证:C为线段OG的中点;
(2)连接AO1,作⊙O1的弦DE,使DE∥AO1,求E点的坐标;
(3)如图2,线段EA、EB(或它们的延长线)分别交⊙O于点M、N.精英家教网问:当点E在(不含端点A、B)上运动时,线段MN的长度是否会发生变化?试证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

点P是x轴正半轴上的一个动点,过点P作x轴的垂线PA交双曲线y=
1
x
于点A,连接OA并延长,与双曲线y=
1
x
交于点F,FH垂直于x轴,垂足为点H,连接AH、PF.
精英家教网
(1)如图①,当点A的横坐标为
3
2
时,求四边形APFH的面积.
(2)如图②,当点P在x轴的正方向上运动到点D,过点D作x轴的垂线交双曲线于点B,连接BO并延长,与双曲线y=
1
x
交于点F,FH垂直于x轴,垂足为点H,连接BH、DF,求四边形BDFH的面积.
(3)若双曲线的解析式为y=
k
x
,四边形BDFH的面积为
 
.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

点P是x轴正半轴上的一个动点,过点P作x轴的垂线PA交双曲线数学公式于点A,连接OA并延长,与双曲线数学公式交于点F,FH垂直于x轴,垂足为点H,连接AH、PF.
作业宝
(1)如图①,当点A的横坐标为数学公式时,求四边形APFH的面积.
(2)如图②,当点P在x轴的正方向上运动到点D,过点D作x轴的垂线交双曲线于点B,连接BO并延长,与双曲线数学公式交于点F,FH垂直于x轴,垂足为点H,连接BH、DF,求四边形BDFH的面积.
(3)若双曲线的解析式为数学公式,四边形BDFH的面积为______.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:2007年辽宁省大连市甘井子区中考数学模拟试卷(解析版) 题型:解答题

点P是x轴正半轴上的一个动点,过点P作x轴的垂线PA交双曲线于点A,连接OA并延长,与双曲线交于点F,FH垂直于x轴,垂足为点H,连接AH、PF.

(1)如图①,当点A的横坐标为时,求四边形APFH的面积.
(2)如图②,当点P在x轴的正方向上运动到点D,过点D作x轴的垂线交双曲线于点B,连接BO并延长,与双曲线交于点F,FH垂直于x轴,垂足为点H,连接BH、DF,求四边形BDFH的面积.
(3)若双曲线的解析式为,四边形BDFH的面积为______.(直接写出答案)

查看答案和解析>>

同步练习册答案