精英家教网 > 初中数学 > 题目详情
如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB.(结果保留整数
塔高AB大约为58米
解:依题意可得:∠AEB=30°,∠ACE=15°,
又∵∠AEB=∠ACE+∠CAE,∴∠CAE=15°。
∴△ACE为等腰三角形。∴AE=CE=100米。
在Rt△AEF中,∠AEF=60°,∴EF=AEcos60°=50(米),AF=AEsin60°=50(米)。
在Rt△BEF中,∠BEF=30°,∴BF=EFtan30°=

答:塔高AB大约为58米。
先判断△ACE为等腰三角形,在Rt△AEF中表示出EF、AF,在Rt△BEF中求出BF,根据AB=AF-BF即可得出答案。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.
(1)求AC的长度;
(2)求每级台阶的高度h.
(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,王明站在地面B处用测角仪器测得楼顶点E的仰角为45°,楼顶上旗杆顶点F的仰角为55°,已知测角仪器高AB=1.5米,楼高CE=14.5米,求旗杆EF的高度(精确到1米).(供参考数据:sin55°≈0.8,cos55°≈0.57,tan55°≈1.4).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.

(1)求船P到海岸线MN的距离(精确到0.1海里);
(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为(结果精确到0.1m,≈1.73).

A.3.5m      B.3.6m      C.4.3m      D.5.1m

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

计算:            

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,四边形中,对角线AC、BD相交于点E,. 求对角线的长和的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

对于sin60°有下列说法:①sin60°是一个无理数;②sin60°>sin50°;③sin60°=6sin10°。其中说法正确的有(   )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知“中国渔政310”船(A)在南海执行护渔任务,接到陆地指挥中心(P)命令,得知出事渔船(B)位于陆地指挥中心西南方向,位于“中国渔政310”船正南方向,“中国渔政310”船位于陆地指挥中心北偏西60°方向,距离为80海里的地方.而“中国渔政310”船最大航速为20海里/时.根据以上信息,请你求出“中国渔政310”船接到命令后赶往渔船出事地点最少需要多少时间(结果保留根号)?

查看答案和解析>>

同步练习册答案