分析 (1)根据垂直的定义得到∠ADB=∠AEC=90°,得到∠ABD=∠ACQ=90°-∠BAC.推出△APB≌△QAC(SAS),根据全等三角形的性质即可得到结论;
(2)通过△APB≌△QAC,得∠BAP=∠CQA,通过等量代换得∠BAP+∠QAE=90°即可得AP⊥AQ.
解答 证明:(1)∵CF⊥AB,BE⊥AC,
∴∠ADB=∠AEC=90°,
∴∠ABD=∠ACQ=90°-∠BAC.
∵BP=AC,CQ=AB,
在△APB和△QAC中,
$\left\{\begin{array}{l}{BP=AC}\\{∠ABD=∠ACQ}\\{CQ=AB}\end{array}\right.$,
∴△APB≌△QAC(SAS),
∴AP=AQ,
(2)∵△APB≌△QAC,
∴∠BAP=∠CQA,
∵∠CQA+∠QAE=90°,
∴∠BAP+∠QAE=90°.
即AP⊥AQ.
点评 本题考查了全等三角形的性质和判定,垂直定义,三角形内角和定理的应用,解此题的关键是推出△APB≌△QAC,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2016-2017学年江苏省句容市华阳片七年级下学期第一次月考数学试卷(解析版) 题型:判断题
在△ABC中,∠A=50°,点D,E分别是边AC,AB上的点(不与A,B,C重合),点P是平面内一动点(P与D,E不在同一直线上),设∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点P在边BC上运动(不与点B和点C重合),如图(1)所示,则∠1+∠2=________
(用α的代数式表示).
(2)若点P在ABC的外部,如图(2)所示,则∠α,∠1,∠2之间有何关系?写出你的结论,并说明理由.
(3)当点P在边CB的延长线上运动时,试画出相应图形,标注有关字母与数字,并写出对应的∠α,∠1,∠2之间的关系式.(不需要证明)
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com