精英家教网 > 初中数学 > 题目详情

【题目】如图,以AB为直径的⊙O外接于ABC,过A点的切线APBC的延长线交于点PAPB的平分线分别交ABAC于点DE,其中AEBDAEBD)的长是一元二次方程x2﹣5x+6=0的两个实数根.

(1)求证:PABD=PBAE

(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.

【答案】(1)证明见解析;(2)存在,

【解析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形的性质即可求出答案.

(2)过点DDF⊥PB于点F,作DG⊥AC于点G,易求得AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC=,从而可求出ADDG的长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形的面积即可求出菱形ADFE的面积.

1)∵PD平分∠APB,

∴∠APE=∠BPD,

∵AP⊙O相切,

∴∠BAP=∠BAC+∠EAP=90°,

∵AB⊙O的直径,

∴∠ACB=∠BAC+∠B=90°,

∴∠EAP=∠B,

∴△PAE∽△PBD,

∴PABD=PBAE;

(2)如图,过点DDF⊥PB于点F,作DG⊥AC于点G,

∵PD平分∠APB,AD⊥AP,DF⊥PB,

∴AD=DF,

∵∠EAP=∠B,

∴∠APC=∠BAC,

易证:DF∥AC,

∴∠BDF=∠BAC,

由于AE,BD(AE<BD)的长是x2﹣5x+6=0的两个实数根,

解得:AE=2,BD=3,

由(1)可知:

∴cos∠APC=

∴cos∠BDF=cos∠APC=

∴DF=2,

∴DF=AE,

四边形ADFE是平行四边形,

∵AD=DF,

四边形ADFE是菱形,此时点F即为M点,

∵cos∠BAC=cos∠APC=

∴sin∠BAC=

∴DG=

菱形ADME的面积为:DGAE=2×=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中,.为最长边.时,是直角三角形;当时,利用代数式的大小关系,探究的形状(按角分类).

1)当三边分别为689时,______三角形;当三边分别为6811时,______三角形.

2)猜想,当______时,为锐角三角形;当______时,为钝角三角形.

3)判断当时,的形状,并求出对应的的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB90°AC8BC6,分别以ABC的边ABBCCA为一边向ABC外作正方形ABDEBCMNCAFG,连接EFND,则图中阴影部分的面积之和等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是(  )

A. 2 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为正六边形ABCDEF的中心,点MAF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点NBC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B在反比例函数y=的图象上,过点A、B作x轴的垂线,垂足分别是M、N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积是3,则k的值为( )

A.2 B.4 C.﹣2 D.﹣4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=2cmBC=3cm,点P沿B→A→D运动,运动到点D时停止运动,点P运动的同时,另一点QB→C运动,速度是点P的一半,当点P停止运动时,点Q也停止运动.设点P运动的路程为xcm,其中设,可可根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是可可的探究过程,请补充完整.

1)如图是画出的函数x的函数图象,观察图象.当x=1时,=_____;并写出函数的一条性质:________________________________________

2)请帮助可可写出x的函数关系式(不用写出取值范围)__________________

3)请按照列表、描点、连线的步骤在同一直角坐标系中,画出函数的图象.

4)结合画出函数图象,解决问题:当时,点P运动的路程x=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一架外国侦察机沿方向侵入我国领空进行非法侦察,我空军的战斗机沿方向与外国侦察机平行飞行,进行跟踪监视,我机在处与外国侦察机处的距离为米,,这时外国侦察机突然转向,以偏左的方向飞行,我机继续沿方向以/秒的速度飞行,外国侦察机在点故意撞击我战斗机,使我战斗机受损.问外国侦察机由的速度是多少?(结果保留整数,参考数据

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD=6AB⊥BCAD⊥CD∠BAD=60°,点MN分别在ABAD边上,若AMMB=ANND=12,则tan∠MCN=

查看答案和解析>>

同步练习册答案