精英家教网 > 初中数学 > 题目详情
12.计算:$\frac{1}{2+\sqrt{3}}$+$\frac{1}{2-\sqrt{3}}$.

分析 先分母有理化,再合并同类项即可.

解答 解:原式=$\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}$+$\frac{2+\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})}$
=2-$\sqrt{3}$+2+$\sqrt{3}$
=4.

点评 本题考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算法则,需要灵活应用法则进行计算,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.下列四个点中,在函数y=-$\frac{3}{x}$的图象上的是(  )
A.(1,3)B.(0,-3)C.(1,-3)D.(-3,0)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示.则这20户家庭该月用电量的平均数是(  )
用电量(度)100140150180200
户数34652
A.153B.154C.160D.180

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,点C在线段BD上,AB⊥BD,PD⊥BD,∠B=∠D=90°,AB=3,BC=6,CD=2,则当DE=1或4时,△ABC与△CDE相似.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.化简:$\sqrt{24}$=2$\sqrt{6}$;-$\sqrt{4\frac{1}{4}}$=-$\frac{\sqrt{17}}{2}$;$\sqrt{\frac{{{a^2}b}}{{4{c^2}}}}$=|$\frac{a}{2c}$|$\sqrt{b}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知抛物线y=x2-(k+2)x+$\frac{5k+2}{4}$和直线y=(k+1)x+(k+1)2
(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;
(2)抛物线于x轴交于点A、B,直线y=(k+1)x+(k+1)2与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,当x1•x2-x3=0时,求k的值.
(3)抛物线于x轴交于点A、B,直线y=(k+1)x+(k+1)2与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;
(4)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.若两个相似多边形对应边的比为1:$\sqrt{3}$,则面积之比为(  )
A.1:3B.3:1C.1:$\sqrt{3}$D.$\sqrt{3}$:1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.计算:
(1)$\sqrt{3\frac{13}{36}}$=$\frac{11}{6}$;
(2)$\sqrt{1\frac{1}{3}}$+$\sqrt{\frac{3}{4}}$=$\frac{7}{6}$$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知实数x,y满足(x-$\sqrt{{x}^{2}+4}$)(y-$\sqrt{{y}^{2}+2}$)=16,则x$\sqrt{{y}^{2}+2}$+y$\sqrt{{x}^{2}+4}$的值为-$\frac{31}{4}$.

查看答案和解析>>

同步练习册答案