精英家教网 > 初中数学 > 题目详情
19.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为(  )
A.-5B.-4C.-3D.-1

分析 满足不等式-x+m>nx+4n>0就是直线y=-x+m位于直线y=nx+4n的上方且位于x轴的上方的图象,据此求得自变量的取值范围即可.

解答 解:∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,
∴关于x的不等式-x+m>nx+4n的解集为x<-2,
∵y=nx+4n=0时,x=-4,
∴nx+4n>0的解集是x>-4,
∴-x+m>nx+4n>0的解集是-4<x<-2,
∴关于x的不等式-x+m>nx+4n>0的整数解为-3.
故选:C.

点评 本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:
(1)表示乙离A地的距离与时间关系的图象是l2(填l1或l2);
甲的速度是30km/h,乙的速度是20km/h;
(2)甲出发多少小时两人恰好相距5km?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知点A在函数y1=-$\frac{1}{x}$(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为(  )
A.有1对或2对B.只有1对C.只有2对D.有2对或3对

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,菱形ABCD中,∠BAD=45°,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于2,则AB=2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.据某网站调查,2016年全国网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下:

根据以上信息解答下列问题:
(1)请补全条形统计图;
(2)如果某市约有300万人口,请你估计该市最关注教育问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,请用列表法或树形图法表示抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在边长为2的等边三角形ABC中,P是BC边上任意一点,过点 P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.
(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;
(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,DE=DF.在下列条件中,使四边形BECF是菱形的是(  )
A.EB⊥ECB.AB⊥ACC.AB=ACD.BF∥CE

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为$\sqrt{14}$.

查看答案和解析>>

同步练习册答案