精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,AOM面积为1.

(1)求反比例函数的解析式;

(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.

【答案】(1) (2)(0,

【解析】

(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;
(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.

(1)∵反比例函数 y= =(k>0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M,

|k|=1,

k>0,

k=2,

故反比例函数的解析式为:y=

(2)作点 A 关于 y 轴的对称点 A′,连接 A′B,交 y 轴于点 P,则 PA+PB 最小.

,解得,或

A(1,2),B(4,),

A′(﹣1,2),最小值 A′B= =

设直线 A′B 的解析式为 y=mx+n,

,解得

∴直线 A′B 的解析式为 y=

x=0 时,y=

P 点坐标为(0,).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,∠BCD90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D'BCC'D'相交于点E,若BC8CE3C'E2,则阴影部分的面积为(  )

A.12+2B.13C.2+6D.26

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列方程中,一元二次方程的个数是(  )

①3x2+7=0;②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x2=0.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是(  )

A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD交于点O.过点CBD的平行线,过点DAC的平行线,两直线相交于点E.

(1)求证:四边形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面积是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,已知AB=AC,BAC=90°,E为边AC上一点,连接BE.

(1)如图1,若ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;

(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=30°,P点在∠AOB内部,M点在射线OA上,将线段PMP点逆时针旋转90°,M点恰好落在OB上的N点(OM>ON),若PM=,ON=8,则OM=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初三(1)班要从22女共4名同学中选人做晨会的升旗手.

1)若从这4人中随机选1人,则所选的同学性别为男生的概率是   

2)若从这4人中随机选2人,求这2名同学性别相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DEPOPO延长线于点E,连接PB,EDB=EPB.

(1)求证:PB是⊙O的切线.

(2)若PB=3,DB=4,求DE的长.

查看答案和解析>>

同步练习册答案