精英家教网 > 初中数学 > 题目详情
在Rt△ACB中,∠ABC=90°,BC=6cm,AB=8cm
(1)求AC的长;
(2)若点P从点B出发,以2cm/s的速度在BC所在的直线l上运动,设运动时间为t,那么当t为何值时,△ACP为等腰三角形?
分析:(1)利用勾股定理直接求出即可;
(2)△ACP为等腰三角形,分三种情况探讨:①CP=CA,②AP=AC,③PA=PC;逐一分析找出答案即可.
解答:解:(1)∵∠ABC=90°,
∴AC2=AB2+BC2=82+62=100,
∴AC=10.
(2)①若CP=CA,

则:BP=CP+BC=6+10=16或BP=CP-BC=10-6=4,
即2t=16,t=8或2t=4,t=2;
②若AP=AC,

则:
AB垂直平分PC,BP=BC=6,
即2t=6,t=3;
③若PA=PC,

则P在AC的垂直平分线上,所以P在B左侧,
PB=2t,BC=6,
∴PC=2t=16,t=8,PA=2t+6,
∵∠ABP=90°,
∴AP2=AB2+BP2
即(2t+6)2=(2t)2+82
解得t=
7
6

所以当点P向左运动
7
6
s、2s、3s或向右运动8s时,△ACP为等腰三角形.
点评:此题综合考查了勾股定理、等腰三角形的性质以及渗透分类讨论思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.
(1)求线段AD的长度;
(2)点E是线段AC上的一点,试问当点E在什么位置时,直线ED与⊙O相切?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖州)如图,已知在Rt△ACB中,∠C=90°,AB=13,AC=12,则cosB的值为
5
13
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•青铜峡市模拟)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:
(1)当t为何值时,PQ∥BC?
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(3)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丹东一模)在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=10,则点D到AB的距离是(  )

查看答案和解析>>

同步练习册答案