精英家教网 > 初中数学 > 题目详情

【题目】为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.

【答案】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,
∴△ABD∽△ECD,

解得= (米).
答:两岸间的大致距离为100米
【解析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.
【考点精析】解答此题的关键在于理解相似三角形的应用的相关知识,掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是平行四边形,点A,B,C在⊙O上,P为 上一点,连接AP,CP,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD

(2)如图2,如果∠EDF=60,且∠EDF两边分别交边AB,AC于点E,F,那么线段AE,AF,AD之间有怎样的数量关系?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若BC=ECBCE=ACD,则添加不能使ABC≌△DBC的条件是(

AAB=DE BB=E CAC=DC DA=D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程.
(1)(x﹣1)2=4;
(2)x2+3x﹣4=0;
(3)4x(2x+1)=3(2x+1);
(4)2x2+5x﹣3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,射线CBOA,C=OAB=100°,E、FCB上,且满足∠FOB=AOB,OE平分∠COF。

(1)求∠EOB的度数;

(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值;

(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=OBA?若存在,求出其度数;若不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC=90°,AB=CB,点E在边BC上,点F在边AB的延长线上,BE=BF.

(1)求证:ABE≌△CBF;

(2)若∠CAE=30°,求∠ACF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.

(1)判断△ABE的形状,并证明你的结论;

(2)用含b代数式表示四边形ABFE的面积;

(3)求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=60°∠C=20°AD△ABC的高,AE为角平分线.求∠EAD的度数.

查看答案和解析>>

同步练习册答案