【题目】如图,在矩形ABCD中,点E是BC边上的一点,且AE⊥BD,垂足为点F,∠DAE=2∠BAE.
(1)求证:BF:DF=1:3;
(2)若四边形EFDC的面积为11,求△CEF的面积.
【答案】(1)详见解析;(2)2.
【解析】
(1)根据已知条件得到∠DAE=60°,∠BAE=30°,又AE⊥BD,得到, ,于是得到结论;
(2)根据已知条件得到△BEF∽△BDC,求得∠ABF=60°,得到∠FBE=30°,求得,
,由于BD=4BF,得到,根据三角形的面积公式即可得到结论.
(1)证明:∵四边形ABCD为矩形,∠DAE=2∠BAE,
∴∠DAE=60°,∠BAE=30°,
又∵AE⊥BD,
∴,,
∴BF:DF=1:3;
(2)解:∵∠FBE=∠CBD,∠BFE=∠DCB,
∴△BEF∽△BDC,
∵∠BAE=30°,
∴∠ABF=60°,
∴∠FBE=30°,
∴,
∴,
∵BD=4BF,
∴,
∴,
∵S四边形EFDC=11,
∴S△BEF=1,
∵,,
∴,
∴,
∴S△CEF=1×2=2.
科目:初中数学 来源: 题型:
【题目】下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.
已知:如图1,和外的一点.
求作:过点作的切线.
作法:如图2,
①连接;
②作线段的垂直平分线,直线交于;
③以点为圆心,为半径作圆,交于点和;
④作直线和.
则,就是所求作的的切线.
根据上述作图过程,回答问题:
(1)用直尺和圆规,补全图2中的图形;
(2)完成下面的证明:
证明:连接,,
∵由作图可知是的直径,
∴(______)(填依据),
∴,,
又∵和是的半径,
∴,就是的切线(______)(填依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=(k是常数).
(1)若该函数的图象与x轴有两个不同的交点,试求k的取值范围;
(2)若点(1,k)在某反比例函数图象上,要使该反比例函数和二次函数y=都是y随x的增大而增大,求k应满足的条件及x的取值范围;
(3)若抛物线y=与x轴交于A(,0)、B(,0)两点,且<,=34,若与y轴不平行的直线y=ax+b经过点P(1,3),且与抛物线交于(,)、(,)两点,试探究是否为定值,并写出探究过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;
(3)在(2)的条件下,抛物线上点D(不与C重合)的纵坐标为m的最大值,在x轴上找一点E,使点B、C、D、E为顶点的四边形是平行四边形,请直接写出E点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形,,,为边上任意一点,连结,,以为直径作分别交,于点,,连结,.
(1)若点为的中点,证明:.
(2)若为等腰三角形时,求的长.
(3)作点关于直线的对称点.
①当点落在线段上时,设线段,交于点,求与的面积之比.
②在点的运动过程中,当点落在四边形内时(不包括边界),则的范围是________(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在菱形ABCD中,∠BAD=120°,AB=4cm.动点E在射线BC上匀速运动,其运动速度为1cm/s,运动时间为ts.连接AE,并将线段AE绕点A顺时针旋转120°至AF,连接BF.
(1)试说明无论t为何值,△ABF的面积始终为定值,并求出该定值;
(2)如图2,连接EF,BD,交于点H,BD与AE交于点G,当t为何值时,△HEG为直角三角形?
(3)如图3、当F、B、D三点共线时,求tan∠FEB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图1,抛物线与轴交于点、,与轴交于点,且,.
(1)求抛物线解析式;
(2)如图2,点是抛物线第一象限上一点,连接交轴于点,设点的横坐标为,线段长为,求与之间的函数关系式;
(3)在(2)的条件下,过点作直线轴,在上取一点(点在第二象限),连接,使,连接并延长交轴于点,过点作于点,连接、、.若时,求值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是 = =;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知是边长为的等边三角形,动点,同时从,两点出发,分别沿,匀速运动,其中点运动的速度是,点运动的速度是,当点到达点时,,两点都停止运动,设运动时间为,解答下列问题:
(1)如图①,当为何值时,;
(2)如图②,当为何值时,为直角三角形;
(3)如图③,作交于点,连接,当为何值时,与相似?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com