【题目】如图,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】
①在AE取点F,使EF=BE.利用已知条件AB=AD+2BE,可得AD=AF,进而证出2AE=AB+AD;
②在AB上取点F,使BE=EF,连接CF.先由SAS证明△ACD≌△ACF,得出∠ADC=∠AFC;再根据线段垂直平分线、等腰三角形的性质得出∠CFB=∠B;然后由邻补角定义及四边形的内角和定理得出∠DAB+∠DCB=180°;
③根据全等三角形的对应边相等得出CD=CF,根据线段垂直平分线的性质得出CF=CB,从而CD=CB;
④由于△CEF≌△CEB,△ACD≌△ACF,根据全等三角形的面积相等易证S△ACE-S△BCE=S△ADC.
解:①在AE取点F,使EF=BE,
∵AB=AD+2BE=AF+EF+BE,EF=BE,
∴AB=AD+2BE=AF+2BE,
∴AD=AF,
∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,
∴AE=(AB+AD),故①正确;
②在AB上取点F,使BE=EF,连接CF.
在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,
∴△ACD≌△ACF,
∴∠ADC=∠AFC.
∵CE垂直平分BF,
∴CF=CB,
∴∠CFB=∠B.
又∵∠AFC+∠CFB=180°,
∴∠ADC+∠B=180°,
∴∠DAB+∠DCB=360-(∠ADC+∠B)=180°,故②正确;
③由②知,△ACD≌△ACF,∴CD=CF,
又∵CF=CB,
∴CD=CB,故③正确;
④易证△CEF≌△CEB,
所以S△ACE-S△BCE=S△ACE-S△FCE=S△ACF,
又∵△ACD≌△ACF,
∴S△ACF=S△ADC,
∴S△ACE-S△BCE=S△ADC,故④错误;
即正确的有3个,
故选:C.
科目:初中数学 来源: 题型:
【题目】小明从二次函数y=ax2+bx+c的图像(如图)中得出了下面的六条信息:①a<0;②c=0;③函数的最小值为-3;④二次函数y=ax2+bx+c的图像与x轴交于点(0,0),(2.5,0);⑤当0<x1<x2<2时,y1<y2;⑥对称轴是直线x=2.你认为其中正确的是________(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当,时,∵,∴,当且仅当时取等号.请利用上述结论解决以下问题:
(1)当时,的最小值为_______;当时,的最大值为__________.
(2)当时,求的最小值.
(3)如图,四边形ABCD的对角线AC ,BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.
(1)求直线CD的解析式;
(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的个数为( )
①三角形的三条高都在三角形内,且都相交于一点
②三角形的中线都是过三角形的某一个顶点,且平分对边的直线
③在△ABC中,若,则△ABC是直角三角形
④一个三角形的两边长分别是8和10,那么它的最短边的取值范围是2<b<18.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,在ΔABC和ΔADE中,AB=AC,AD=AE,∠BAC=∠DAE,,且点B,A,D在同一条直线上,连接BE,CD,M,N分别为BE,CD的中点, 连接AM,AN,MN.
⑴.求证:BE=CD
⑵.求证:ΔAMN是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.
(1)求证:AB=AD;
(2)求证:CD平分∠ACE.
(3)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com