精英家教网 > 初中数学 > 题目详情
(2013•随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=
9
10

其中正确的是(  )
分析:先求出DE、CE的长,再根据翻折的性质可得AD=AF,EF=DE,∠AFE=∠D=90°,再利用“HL”证明Rt△ABG和Rt△AFG全等,根据全等三角形对应边相等可得BG=FG,再设BG=FG=x,然后表示出EG、CG,在Rt△CEG中,利用勾股定理列出方程求出x=
3
2
,从而可以判断①正确;根据∠AGB的正切值判断∠AGB≠60°,从而求出∠CGF≠60°,△CGF不是等边三角形,FG≠FC,判断②错误;先求出△CGE的面积,再求出EF:FG,然后根据等高的三角形的面积的比等于底边长的比求解即可得到△FGC的面积,判断③正确.
解答:解:∵正方形ABCD中,AB=3,CD=3DE,
∴DE=
1
3
×3=1,CE=3-1=2,
∵△ADE沿AE对折至△AFE,
∴AD=AF,EF=DE=1,∠AFE=∠D=90°,
∴AB=AF=AD,
在Rt△ABG和Rt△AFG中,
AG=AG
AB=AF

∴Rt△ABG≌Rt△AFG(HL),
∴BG=FG,
设BG=FG=x,则EG=EF+FG=1+x,CG=3-x,
在Rt△CEG中,EG2=CG2+CE2
即(1+x)2=(3-x)2+22
解得,x=
3
2

∴CG=3-
3
2
=
3
2

∴BG=CG=
3
2

即点G是BC中点,故①正确;

∵tan∠AGB=
AB
BG
=
3
3
2
=2,
∴∠AGB≠60°,
∴∠CGF≠180°-60°×2≠60°,
又∵BG=CG=FG,
∴△CGF不是等边三角形,
∴FG≠FC,故②错误;

△CGE的面积=
1
2
CG•CE=
1
2
×
3
2
×2=
3
2

∵EF:FG=1:
3
2
=2:3,
∴S△FGC=
3
2+3
×
3
2
=
9
10
,故③正确;
综上所述,正确的结论有①③.
故选B.
点评:本题考查了正方形的性质,翻折变换的性质,全等三角形的判定与性质,勾股定理的应用,根据各边的熟量关系利用勾股定理列式求出BG=FG的长度是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•随州)如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•随州)如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计)(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•随州)如图是一圆锥,在它的三视图中,既是中心对称图形,又是轴对称图形的是它的
视图(填“主”,“俯”或“左”).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•随州)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O与点D,过点D的切线分别交AB、AC的延长线与点E、F.
(1)求证:AF⊥EF.
(2)小强同学通过探究发现:AF+CF=AB,请你帮忙小强同学证明这一结论.

查看答案和解析>>

同步练习册答案