精英家教网 > 初中数学 > 题目详情
直角坐标系中,已知点A(-1,2)、点B(5,4),x轴上一点P(x,0)满足PA+PB最短,则x=
 
分析:先画出直角坐标系,标出A、B点的坐标,再求出A点关于x轴的对称点A′,连接A′B,交x轴于点P,则P即为所求点,用待定系数法求出过A′B两点的直线解析式,求出此解析式与x轴的交点坐标即可.
解答:精英家教网解:作点A关于x轴的对称点A′,连接A′B,设过A′B的直线解析式为y=kx+b(k≠0),
-k+b=-2
5k+b=4

解得
k=1
b=-1

故此直线的解析式为:y=x-1,
当y=0时,x=1.
故答案为:1.
点评:本题考查的是最短线路问题及用待定系数法求一次函数的解析式,熟知轴对称的性质及一次函数的相关知识是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数).我们规定:把点Pn(xn,yn)(n=0,1,2,3,…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”.则Pn的“绝对坐标”为(  )
A、(2n-1
2
2n-1
2
)或(2n,0)
B、(2n,0)或(0,2n
C、(0,2n)或(2n-1
2
2n-1
2
D、(2n-1
2
2n-1
2
)或(2n,0)或(0,2n

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,已知点A(-3,2),B(2,-4),在x轴上找一点C,使AC+BC最短,则点C的坐标为(  )
A、(0,-
5
8
)
B、(-
4
3
,0)
C、(-4,0)
D、(
4
3
,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.
(1)画出将△OAB绕原点逆时针旋转90°后所得的△OA1B1
(2)并写出点A1、B1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,已知点A(-3,4)和点B,若△AOB是等腰直角三角形,∠AOB=90°,则点B的坐标是
(4,3)或(-4,-3)
(4,3)或(-4,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,已知点B(-3,3),点A(1,1),在x轴和y轴上确定点P,使△ABP为等腰三角形,则符合条件的点P的个数共有(  )

查看答案和解析>>

同步练习册答案