精英家教网 > 初中数学 > 题目详情
如图AB是⊙O的直径,弧BC度数是60,D是劣弧BC的中点,P是AB上的动点,若⊙O的半径为1,则PC+PD的最小值是
2
2
分析:作D点关于AB的对称点E,连CE交AB于P点,连EC,根据两点之间线段最短得到CE是PD+PC的最小值.在△OCE中,利用勾股定理即可求解.
解答:解:作D点关于AB的对称点E,连CE交AB于P点,
∵弧BC度数是60,D是劣弧BC的中点,
∴弧DC=弧BD=弧BE=30°
∴∠CDE=90°
∴CE是PD+PC的最小值.
又∵OC=OE,
∴△COE为等腰直角三角形.
∵OE=OC=1,
∴CE=
2

∴PD+PC的最小值为
2

故答案是:
2
点评:本题考查了圆周角定理,正确确定P点的位置是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图AB是⊙O的直径,C是⊙O上的一点,若AC=8cm,AB=10cm,OD⊥BC于点D,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图AB是⊙O的直径,弦DC⊥AB于点E,在
AD
上取一点F,连接精英家教网CF交AB于点M,连接DF并延长交BA的延长线于点N.
求证:
(1)∠DFC=∠DOB;
(2)MN•OM=MC•FM.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图AB是⊙O的直径,∠D=35°,则∠AOC=
70°
70°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•自贡)如图AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)若AB=2,∠P=30°,求AP的长;
(2)若D为AP的中点,求证:直线CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南昌)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.
(1)在图1中,画出△ABC的三条高的交点;
(2)在图2中,画出△ABC中AB边上的高.

查看答案和解析>>

同步练习册答案