精英家教网 > 初中数学 > 题目详情
如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.
(1)由题意可知C(0,8),又A(6,0),
所以直线AC解析式为:y=-
4
3
x+8,
因为P点的横坐标与N点的横坐标相同为6-x,代入直线AC中得y=
4
3
x

所以P点坐标为(6-x,
4
3
x);

(2)设△MPA的面积为S,在△MPA中,MA=6-x,MA边上的高为
4
3
x,
其中,0≤x<6,
∴S=
1
2
(6-x)×
4
3
x=
2
3
(-x2+6x)=-
2
3
(x-3)2+6,
∴S的最大值为6,此时x=3;
(3)延长NP交x轴于Q,则有PQ⊥OA
①若MP=PA,
∵PQ⊥MA,
∴MQ=QA=x,
∴3x=6,
∴x=2;
②若MP=MA,则MQ=6-2x,PQ=
4
3
x,PM=MA=6-x,
在Rt△PMQ中,
∵PM2=MQ2+PQ2
∴(6-x)2=(6-2x)2+(
4
3
x)2
∴x=
108
43

③若PA=AM,
∵PA=
5
3
x,AM=6-x,
5
3
x=6-x,
∴x=
9
4

综上所述,x=2,或x=
108
43
,或x=
9
4

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知平面直角坐标系中,A、B、C三点的坐标分别是(0,2)、(0,-2),(4,-2).
(1)请在给出的直角坐标系xOy中画出△ABC,设AC交X轴于点D,连接BD,证明:OD平分∠ADB;
(2)请在x轴上找出点E,使四边形AOCE为平行四边形,写出E点坐标,并证明四边形AOCE是平行四边形;
(3)设经过点B,且以CE所在直线为对称轴的抛物线的顶点为F,求直线FA的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的两个实数根,且m<n.
(1)求抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;
(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH分成面积相等的两部分,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知抛物线的对称轴为直线x=4,该抛物线与x轴交于A、B两点,与y轴交于C点,且A、C坐标为(2,0)、(0,3).
(1)求此抛物线的解析式;
(2)抛物线上有一点P,使以PC为直径的圆过B点,求P的坐标;
(3)在满足(2)的条件下,x轴上是否存在点E,使得△COE与△PBC相似?若存在,求出E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y1=ax2+bx+c交x轴于A、B两点,交y轴于点C,对称轴为直线x=1,且A、C两点的坐标分别为A(-1,0)、C(0,-3).
(1)求抛物线y1=ax2+bx+c和直线BC:y2=mx+n的解析式;
(2)当y1•y2≥0时,直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,设抛物线C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
(1)求a的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.
①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;
②若l与△DHG的边DG相交,求点N的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的对称轴是直线x=2,顶点A的纵坐标为1,点B(4,0)在此抛物线上.

(1)求此抛物线的解析式;
(2)若此抛物线对称轴与x轴交点为C,点D(x,y)为抛物线上一动点,过点D作直线y=2的垂线,垂足为E.
①用含y的代数式表示CD2,并猜想CD2与DE2之间的数量关系,请给出证明;
②在此抛物线上是否存在点D,使∠EDC=120°?如果存在,请直接写出D点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2一g一•昆明)在平面直角坐标系v,抛物线经过O(一,一)、A(4,一)、E(九,-
2
)三点.
(g)求此抛物线的解析式;
(2)以OA的v点M为圆心,OM长为半径作⊙M,在(g)v的抛物线上是否存在这样的点P,过点P作⊙M的切线l,且l与x轴的夹角为九一°?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题v的结果可保留根号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶?

查看答案和解析>>

同步练习册答案