【题目】在等腰梯形ABCD中,AD∥BC,AD=3,AB=CD=4,BC=5,∠B的平分线交DC于点E,交AD的延长线于点F.
(1)如图(1),若∠C的平分线交BE于点G,写出图中所有的相似三角形(不必证明);
(2)在(1)的条件下求BG的长;
(3)若点P为BE上动点,以点P为圆心,BP为半径的⊙P与线段BC交于点Q(如图(2)),请直接写出当BP取什么范围内值时,①点A在⊙P内;②点A在⊙P内而点E在⊙P外.
【答案】(1)见解析;(2)BG= ;(3)①当<BP≤时,点A在⊙P内;②当<BP<时,点A在⊙P内而点E在⊙P外.
【解析】
(1)利用平行线的性质和角平分线定义找到相等的角,进一步根据两角对应相等证明三角形相似;
(2)根据平行线的性质和角平分线定义,得∠ABE=∠AFB,则AB=AF=4,则DF=1;根据平行线分线段成比例定理求得DE和CE的长;根据等腰梯形的性质和角平分线定义,得BG=CG;设BG=CG=x,根据△FDE∽△CGE,求得BG的长;
(3)根据点和圆的位置关系与数量之间的联系进行分析.
解:(1)△ABF∽△GBC,△FDE∽△CGE∽△BCE.理由如下:
∵AD∥BC,AB=CD,
∴∠AFB=∠EBC,∠ABC=∠DCB,
∵BF平分∠ABC, CG平分∠BCD,
∴∠ABF=∠BCG=∠ABC=∠DCB,
∴△ABF∽△GBC;
∵DF∥BC,
∴△FDE∽△BCE;
∵∠AFB=∠DCG=∠ABC=∠DCB,∠DEF=∠CEG,
∴△FDE∽△CGE.
∴△FDE∽△CGE∽△BCE.
(2)∵BE平分∠B,
∴∠ABE=∠EBC,
∵AD∥BC,
∴∠AFB=∠EBC,
∴∠ABE=∠AFB,
∴AB=AF.
∴AF=4,DF=1.
∵AD∥BC,
∴DF:BC=DE:EC,
∴DE=,CE=.
∵AD∥BC,AB=CD,
∴∠BCD=∠ABC.
∵CG平分∠BCD,BE平分∠ABC,
∴∠CBG=∠BCG,
∴BG=CG.
设BG=CG=x,则由△FDE∽△CGE,得
DF:CG=DE:GE,
∴GE=x.
又由△CGE∽△BCE,得
EC2=EGEB,
即=x(x+x),
∴x=,
即BG=.
(3)①连接AP,当BP=AP时,点A在圆P上,此时△ABP∽△ABF,求得BP=,
即BP>AP时,点A在⊙P内.
∴当<BP≤时,点A在⊙P内.
②根据①求得BE=,
∴BP<BE,即BP<时,点A在⊙P内而点E在⊙P外
∴当<BP<时,点A在⊙P内而点E在⊙P外.
科目:初中数学 来源: 题型:
【题目】某校数学兴趣小组的同学测量一架无人飞机P的高度,如图,A,B两个观测点相距,在A处测得P在北偏东71°方向上,同时在B处测得P在北偏东35°方向上.求无人飞机P离地面的高度.(结果精确到1米,参考数据:,,sin71°≈0.95,tan71°≈2.90)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是( )
A. 当m=﹣3时,函数图象的顶点坐标是(,)
B. 当m>0时,函数图象截x轴所得的线段长度大于
C. 当m≠0时,函数图象经过同一个点
D. 当m<0时,函数在x>时,y随x的增大而减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+bx的图象过点A(4,0),设点C(1,-3),在抛物线的对称轴上求一点P,使|PA-PC|的值最大,则点P的坐标为____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的方程ax2+(a+2)x+9a=0有两个不等的实数根x1,x2,且x1<1<x2,那么a的取值范围是( )
A.﹣<a<B.a>C.a<﹣D.﹣<a<0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解下列方程:
(1)3x2+8x﹣3=0(用配方法)
(2)4x2+1=4x(用公式法)
(3)2(x﹣3)2=x2﹣9(用因式分解法)
(4)x2+5x﹣6=0(用适当的方法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(-,y1),C(-,y2)为函数图象上的两点,则y1<y2.其中正确结论是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(3,4),B(5,0),连结AO,AB.点C是线段AO上的动点(不与A,O重合),连结BC,以BC为直径作⊙H,交x轴于点D,交AB于点E,连结CD,CE,过E作EF⊥x轴于F,交BC于G.
(1)AO的长为 ,AB的长为 (直接写出答案)
(2)求证:△ACE∽△BEF;
(3)若圆心H落在EF上,求BC的长;
(4)若△CEG是以CG为腰的等腰三角形,求点C的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com