精英家教网 > 初中数学 > 题目详情
若一个多边形的外角和是它的内角和的
14
,则此多边形的边数是
 
分析:多边形的外角和是360度,外角和是它的内角和的
1
4
,则内角和是1440度.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
解答:解:根据题意,得
(n-2)•180=1440,
解得:n=10.
则此多边形的边数是10.
点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

四边形的内角和为
 
°;若一个多边形的外角和是内角和的
27
,则它的边数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若一个多边形的外角和是它的内角和的
1
5
,则这个多边形是(  )

查看答案和解析>>

科目:初中数学 来源:2012-2013学年辽宁省辽阳九中八年级上学期期中考试数学试题(带解析) 题型:填空题

若一个多边形的外角和比它的内角和少,则这个多边形为      边形;

查看答案和解析>>

科目:初中数学 来源:2012-2013学年辽宁省八年级上学期期中考试数学试题(解析版) 题型:填空题

若一个多边形的外角和比它的内角和少,则这个多边形为       边形;

 

查看答案和解析>>

同步练习册答案