精英家教网 > 初中数学 > 题目详情

【题目】计算:计算与化简
(1) ﹣(﹣2)2+(﹣0.1)0
(2)(x﹣2)2﹣(x+3)(x﹣1).

【答案】
(1)解:原式=3﹣4+1=0

(2)解:原式=x2﹣4x+4﹣(x2+2x﹣3)=x2﹣4x+4﹣x2﹣2x+3=﹣6x+7
【解析】(1)利用算数平方根的意义,非零数的零次幂意义可得出结果;(2)利用完全平方公式、多项式乘多项式法则可化简出结果.
【考点精析】认真审题,首先需要了解零指数幂法则(零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数)),还要掌握多项式乘多项式(多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】王老师为学校购买运动会的奖品后,回学校向后勤处赵主任交账说:我买了两种书共105本,单价分别为8元和12元,买书前我领了1600元,现在还余518元.赵主任算了一下说:你肯定搞错了.

1)赵主任为什么说他搞错了,请你用方程组的知识给予解释;

2)王老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

⑴请画出△ABC关于y轴对称的△A’B’C’(其中A’,B’,C’分別是A,B,C的对应点,不写画法);

⑵直接写出A’,B’,C’三点的坐标:A’ ( ),B’( ),C’( );

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为A的抛物线y=a(x+2)2﹣4交x轴于点B(1,0),连接AB,过原点O作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.

(1)求抛物线的解析式;
(2)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,OB=AP;
(3)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠A=110°,在边AN上取B,C,使AB=BC.点P为边AM上一点,将△APB沿PB折叠,使点A落在角内点E处,连接CE,则∠BPE+∠BCE=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=85°,则∠2的度数( )

A. 24°B. 25°C. 30°D. 35°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCD,对角线ACBD相较于点O,要使ABCD为矩形,需添加下列的一个条件是  

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,如图1,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形EFGH,如图2.设小正方形的边长为x厘米.

(1)当矩形纸板ABCD的一边长为90厘米时,求纸盒的侧面积的最大值;
(2)当EH:EF=7:2,且侧面积与底面积之比为9:7时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了增强学生的身体素质,西南大学附中七年级学生在每天晚自习之后进行夜跑.在学期末的体育考试中,七年级的同学们表现出很好的体育素养,并取得了良好的体育成绩.为了了解七年级学生的体育考试情况,小明抽取了部分同学的体育考试成绩进行分析,体育成绩优、良、中、差分别记为并绘制了如下两幅不完整的统计表:

1)本次调查共调查了 名学生,并补全条形统计图;

2)扇形统计图中类所对应的扇形圆心角的度数是 度;

3)若七年级人数为人,请你估计体育成绩优、良的总人数.

查看答案和解析>>

同步练习册答案