Ïȹ۲ìÏÂÁеÈʽ£¬ÔٻشðÎÊÌ⣺
¢Ù
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2
£»
¢Ú
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6
£»
¢Û
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

£¨1£©¸ù¾ÝÉÏÃæÈý¸öµÈʽÌṩµÄÐÅÏ¢£¬Çë²ÂÏë
1+
1
42
+
1
52
µÄ½á¹û£¬²¢½øÐÐÑéÖ¤£»
£¨2£©¸ù¾ÝÉÏÃæµÄ¹æÂÉ£¬¿ÉµÃ
1+
1
92
+
1
102
=
 
£®
£¨3£©Çë°´ÕÕÉÏÃæ¸÷µÈʽ·´Ó³µÄ¹æÂÉ£¬ÊÔд³öÓÃn£¨nΪÕýÕûÊý£©±íʾµÄµÈʽ£¬²¢¼ÓÒÔÑéÖ¤£®
·ÖÎö£ºÓÉÌâÒ⣺
(1)
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2
£»
(2)
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6
£»
(3)
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

£¨1£©½«
1+
1
32
+
1
42
ÖеÄ3ÓÃ4´úÌ棬4ÓÃ5´úÌæ
£¨2£©½«
1+
1
32
+
1
42
ÖеÄ3ÓÃ9´úÌ棬4ÓÃ10´úÌæ
£¨3£©¸ù¾Ý£¨1£©¡¢£¨2£©×ܽâ¹æÂÉ£¬ÆäÖÐ3ÓÃn£¬4Óã¨n+1£©´úÌ森
½â´ð£º½â£º£¨1£©
1+
1
42
+
1
52
=1+
1
4
-
1
4+1
=1
1
20

ÑéÖ¤£º
1+
1
42
+
1
52
=
1+
1
16
+
1
25
441
16¡Á25
21
20
 =1
1
20

£¨2£©
1+
1
92
+
1
102
=1+
1
9
-
1
10
=1
1
90

£¨3£©
1+
1
n2
+
1
(n+1)2
=1+
1
n2+n

ÑéÖ¤£º
1+
1
n2
+
1
(n+1)2
=
n2(n+1)2+(n+1)2+n2 
n2(n+1)2

=
n2(n+1)2+n2+2n+1+n2
n2(n+1)2

=
n2(n+1)2 +2n(n+1)+1
n2(n+1)2

=
(n2+n+1)2
n2(n+1)2

=
n2+n+1
n(n+1)

=
n2+n
n2+n
+
1
n2+n

=1+
1
n2+n
µãÆÀ£º±¾ÌâÊôÓÚ̽Ë÷¹æÂÉÐÍ£¬Ö÷Òª¿¼²éѧÉúµÄ¹Û²ì¼°Ñ§Ï°ÄÜÁ¦£¬²¢¸ù¾Ý¹Û²ì×ܽá¹æÂɵÄÄÜÁ¦£®ÕâÖÖÀàÐ͵ÄÌâÄ¿£¬Äܹ»¿¼²ìµ½Ñ§ÉúµÄʵ¼Êˮƽ£¬Òò¶øͬѧÃÇÒ»¶¨Òª×ã¹»µÄÖØÊÓ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ïȹ۲ìÏÂÁеÈʽ£¬ÔٻشðÏÂÁÐÎÊÌ⣺
¢Ù
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2
£»
¢Ú
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6
£»
¢Û
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12
£®
£¨1£©ÇëÄã¸ù¾ÝÉÏÃæÈý¸öµÈʽÌṩµÄÐÅÏ¢£¬²ÂÏë
1+
1
42
+
1
52
µÄ½á¹û£¬²¢ÑéÖ¤£»
£¨2£©ÇëÄã°´ÕÕÉÏÃæ¸÷µÈʽ·´Ó³µÄ¹æÂÉ£¬ÊÔд³öÓú¬nµÄʽ×Ó±íʾµÄµÈʽ£¨nΪÕýÕûÊý£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ïȹ۲ìÏÂÁеÈʽ£¬ÔٻشðÏÂÁÐÎÊÌâ¢Ù
1 +
1
12
+
1
22
=1+
1
1
-
1
2
=1
1
2
£»¢Ú
1+
1
22
+
1
32
=1+
1
2
-
1
3
=1
1
6
£»¢Û
1+
1
32
+
1
42
=1+
1
3
-
1
4
=1
1
12
£¬ÇëÄã¸ù¾ÝÉÏÃæÈý¸öµÈʽÌṩµÄÐÅÏ¢£¬²ÂÏë
1 +
1
92
+
1
102
µÄ½á¹ûΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ïȹ۲ìÏÂÁеÈʽ£¬ÔÙÍê³ÉÌâºóÎÊÌ⣺
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬
1
4¡Á5
=
1
4
-
1
5

£¨1£©ÇëÄã²ÂÏ룺
1
2010¡Á2011
=
 
£®
£¨2£©Èôa¡¢bΪÓÐÀíÊý£¬ÇÒ|a-1|+£¨ab-2£©2=0£¬Çó£º
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+¡­+
1
(a+2009)(b+2009)
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ïȹ۲ìÏÂÁеÈʽ£¬ÔٻشðÎÊÌâ
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2
£»
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6
£»
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12
£®
£¨1£©¸ù¾ÝÉÏÃæÈý¸öµÈʽÌṩµÄÐÅÏ¢£¬Çë²ÂÏë
1+
1
92
+
1
102
=
1
1
90
1
1
90
£®
£¨2£©Çë°´ÕÕÉÏÃæ¸÷µÈʽ·´Ó³µÄ¹æÂÉ£¬ÊÔд³öÓÃn£¨nΪÕýÕûÊý£©±íʾµÄµÈʽ£¬²¢¼ÓÒÔÑéÖ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ïȹ۲ìÏÂÁеÈʽ£¬ÔٻشðÎÊÌ⣺
¢Ù
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

¢Ú
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

¢Û
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

¸ù¾ÝÉÏÃæÈý¸öµÈʽÌṩµÄÐÅÏ¢£¬Çë²ÂÏë
1+
1
42
+
1
52
µÄ½á¹û£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸