精英家教网 > 初中数学 > 题目详情

已知反比例函数y=数学公式和一次函数y=2x-1,其中一次函数的图象过(a,b)、(a+1,b+k)两点.如图,已知两个函数图象在第一象限内的交点为A点,在x轴上存在点P,使△AOP为等腰三角形,则P坐标是________.

,0),(-,0),(2,0),(1,0)
分析:把过一次函数的两个点代入一次函数,即可求得k,进而求得反比例函数的解析式,因为A点同时在这两个函数解析式上,让这两个函数组成方程组求解即可得到A点坐标,然后求出OA的距离,再根据:OA=OP,OA=AP,OP=AP,分情况讨论解决.
解答:解:将(a,b)、(a+1,b+k)分别代入一次函数y=2x-1解析式得

解得k=2,
∴反比例函数解析式为y=
将y=和一次函数y=2x-1组成方程组得
解得
∵点A在第一象限,
∴点A的坐标为(1,1).
∴OA==2,OA与x轴所夹锐角为45°,
①当OA为腰时,由OA=OP1得P1,0),
由OA=OP2得P2(-,0);
由OA=AP3得P3(2,0).
②当OA为底时,OP4=AP4得P4(1,0).
∴符合条件的点有4个,分别是(,0),(-,0),(2,0),(1,0).
故答案为(,0),(-,0),(2,0),(1,0).
点评:本题考查了反比例函数的相关问题,在这条直线上的各点的坐标一定适合这条直线的解析式.同时在两个函数解析式上,应是这两个函数解析式的公共解.答案较多时,应有规律的去找不同的解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,一次函数的图象与反比例函数的图象交于A,B两点,与x轴交于点C,过A作AD⊥x轴于D,若OA=
5
,AD=
1
2
OD,点B的横坐标为
1
2

(1)求一次函数的解析式及△AOB的面积.
(2)已知反比例函数y1和一次函数y2,结合图象直接写出:当y1>y2时,x的取值范围.
(3)在坐标轴上是否存在点P使△OAP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知反比例函数y=数学公式和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.
(1)求反比例函数的解析式?
(2)已知A在第一象限,是两个函数的交点,求A点坐标?
(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知反比例函数y1=数学公式和一次函数y2=ax+b的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为2.一次函数y2=ax+b的图象与x轴相交于点C,且三角形ABC是等腰直角三角形.
(1)求反比例函数和一次函数的解析式;
(2)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数的图象与反比例函数的图象交于A,B两点,与x轴交于点C,过A作AD⊥x轴于D,若OA=数学公式,AD=数学公式OD,点B的横坐标为数学公式
(1)求一次函数的解析式及△AOB的面积.
(2)已知反比例函数y1和一次函数y2,结合图象直接写出:当y1>y2时,x的取值范围.
(3)在坐标轴上是否存在点P使△OAP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:江苏省期中题 题型:解答题

如图,已知反比例函数y1=和一次函数y2=ax+b的图象相交于第一象限内的点A,且点A的横坐标为1,过点A作AB⊥x轴于点B,△AOB的面积为2,一次函数y2=ax+b的图象与x轴相交于点C,且三角形ABC是等腰直角三角形。
(1)求反比例函数和一次函数的解析式;
(2)结合图象直接写出:当y1>y2>0时,x的取值范围。

查看答案和解析>>

同步练习册答案