精英家教网 > 初中数学 > 题目详情
19.如图,△ABC中,∠C=90°,AC=6,BC=8,D、E分别在AC、BC上且DE∥AB,将△ABC沿DE折叠,使C点落在斜边AB上的F处,则AF的长是(  )
A.3.6B.4C.4.8D.6.4

分析 连接CF,根据折叠的性质可知,CF⊥DE,得到CF⊥AB,根据勾股定理求出AF的长.

解答 解:连接CF,
根据题意得,CF⊥DE,又DE∥AB,
∴CF⊥AB,
∵∠C=90°,AC=6,BC=8,
∴AB=10,
$\frac{1}{2}$×AC×BC=$\frac{1}{2}$×AB×CF,
∴CF=4.8,
∴AF=$\sqrt{A{C}^{2}-C{F}^{2}}$=3.6,
故选:A.

点评 本题考查了折叠的性质和勾股定理的知识,解答本题的关键是理解折叠前后图形的形状和大小不变,对应边和对应角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图1,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E.点F在AC的延长线上,且∠CAB=2∠CBF.
(1)求证:BF是⊙O的切线;
(2)若AB=6,BF=8,求AD的长;
(3)如图2,在(2)的条件下,求tan∠CBF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图所示,折线ABC是在某市乘出租车需付车费y(元)与行车里程x(千米)之间的函数关系图象.若某人付费30.8元,出租车行驶了多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F是线段AD上的三等分点,连接BE、CE、BF、CF,若$\frac{BC}{AD}=\frac{2}{3}$,且BC=4a.
(1)求四边形ABEC的面积;
(2)写出与△CEF相似但不全等的三角形,并证明其中的一对.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图所示,在△ABC中,AB=AC,AD⊥BC,CG∥AB,BG分别交AD,AC于E,F.若$\frac{EF}{BE}=\frac{2}{3}$,那么$\frac{GE}{BE}$的值为$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知二次函数y=a(x-m)2-a(x-m)(a、m 为常数,且a≠0)的图象与x轴交于A、B 两点
(点A在点B的左侧),与y轴交于点C,其顶点为D.
(1)求A、B的坐标;
(2)过点D作x轴的垂线,垂足为E.若△CBO与△DAE相似(O为坐标原点),试讨论m与a的关系;
(3)在同一平面直角坐标系中,若该二次函数的图象与二次函数y=-a(x-m)2+a(x-m)的图象组合成一个新的图形,这个新图形的对称轴为x=$\frac{2m+1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,用边长为4和2的正方形拼成如图所示图形,则图中阴影部分的面积为$\frac{8}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,抛物线y=ax2+x+c与x轴交于A,B(4,0)两点,与y轴交于点C(0,4).
(1)求抛物线的表达式;
(2)连接AC,BC,求tan∠CAO的值;
(3)动点E以每秒1个单位长度的速度沿A→B方向匀速运动,过点E作EF∥y轴,设点E运动时间为t(0≤t≤6)秒,运动过程中直线EF在△ABC中所扫过的面积为S,求S与t的函数关系式;
(4)若点M,N在线段BC上,点Q,P在第一象限的抛物线上,且四边形MNQP是正方形,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.
(1)当P在AB上方而C在AB下方时(如图1),判断PO与BC的位置关系,并证明你的判断;
(2)当P、C都在AB上方时(如图2),过C点作CD⊥直线AP于D,且PC=2PD,证明:CD是⊙O的切线.

查看答案和解析>>

同步练习册答案