【题目】如图,在平面直角坐标系中,已知A(﹣1,0)、C(4,0),BC⊥x轴于点C,且AC=BC,抛物线y=x2+bx+c经过A、B两点.
(1)求抛物线的表达式;
(2)点E是线段AB上一动点(不与A、B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.
【答案】(1)y=x2﹣2x﹣3;(2)点E的坐标为(,);(3)存在,P1(,),P2(,),P3(,).
【解析】
(1)先求得点A的坐标,然后将点A和点B的坐标代入抛物线的解析式可得到关于b、c的方程组,从而可求得b、c的值;
(2)设点E的坐标为(x,x+1),则点F的坐标为F(x,x2﹣2x﹣3),则可得到EF与x的函数关系式,利用配方法可求得EF的最大值以及点E的坐标;
(3)存在,分两种情况考虑:(i)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3),由E的纵坐标与P纵坐标相等列出关于m的方程,求出方程的解得到m的值,确定出P1,P2的坐标;(ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3),根据F的纵坐标与P的纵坐标相等列出关于n的方程,求出方程的解得到n的值,求出P3的坐标,综上得到所有满足题意P得坐标.
(1)∵A(﹣1,0)、C(4,0),
∴OA=1,OC=4,
∴AC=5,
∵BC⊥x轴于点C,且AC=BC,
∴B(4,5),
将点A和点B的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣3.
∴抛物线的解析式为y=x2﹣2x﹣3.
(2)∵直线AB经过点A(﹣1,0),B(4,5),
设直线AB的解析式为y=kx+b,
∴,解得:,
∴直线AB的解析式为:y=x+1,
∵二次函数y=x2﹣2x﹣3,
∴设点E(t,t+1),则F(t,t2﹣2t﹣3),
∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣),
∴当t=时,EF的最大值为,
∴点E的坐标为().
(3)存在,分两种情况考虑:
(ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3),
∴,
∴m1=,m2=
∴P1(,),P2(,)
(ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3)
则有:n2﹣2n﹣3=﹣
∴n1=, n2=(舍去)
∴P3(,),
综上所述,使△EFP是以EF为直角边的直角三角形所有点P的坐标为:P1(,),P2(,),P3(,).
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,以点为圆心,以为半径作优弧,交于点,交于点.点在优弧上从点开始移动,到达点时停止,连接.
(1)当时,判断与优弧的位置关系,并加以证明;
(2)当时,求点在优弧上移动的路线长及线段的长.
(3)连接,设的面积为,直接写出的取值范围.
备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两所学校的学生都参加了某次体育测试,成绩均为7﹣10分,且为整数.亮亮分别从这两所学校各随机抽取一部分学生的测试成绩,共200份,并绘制了如下尚不完整的统计图.
(1)这200份测试成绩的中位数是 分,m= ;
(2)补全条形统计图;扇形统计图中,求成绩为10分所在扇形的圆心角的度数.
(3)亮亮算出了“1名A校学生的成绩被抽到”的概率是,请你估计A校成绩为8分的学生大约有多少名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为_____m(结果保留整数,≈1.73).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.
请根据图中信息解决下列问题:
(1)共有多少名同学参与问卷调查;
(2)补全条形统计图和扇形统计图;
(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.
(1)求:甲、乙玩具的进货单价各是多少元?
(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为2的菱形中,,是边的中点,若线段绕点旋转得线段,
(Ⅰ)如图①,线段的长__________.
(Ⅱ)如图②,连接,则长度的最小值是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率:
(1)从中任取一球,小球上的数字为偶数;
(2)从中任取一球,记下数字作为点A的横坐标x,把小球放回袋中,再从中任取一球记下数字作为点A的纵坐标y,点A(x,y)在函数的图象上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一个正方形纸片AOBC放置在平面直角坐标系中,点A(0,4),点O(0,0),B(4,0),C(4,4)点.动点E在边AO上,点F在边BC上,沿EF折叠该纸片,使点O的对应点M始终落在边AC上(点M不与A,C重合),点B落在点N处,MN与BC交于点P.
(Ⅰ)如图①,当∠AEM=30°时,求点E的坐标;
(Ⅱ)如图②,当点M落在AC的中点时,求点E的坐标;
(Ⅲ)随着点M在AC边上位置的变化,△MPC的周长是否发生变化?如变化,简述理由;如不变,直接写出其值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com