【题目】如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.
类似地,我们可以认识其他函数.
(1)把函数的图象上各点的纵坐标变为原来的 倍,横坐标不变,得到函数的图象;也可以把函数的图象上各点的横坐标变为原来的 倍,纵坐标不变,得到函数的图象.
(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.
(Ⅰ)函数的图象上所有的点经过④→②→①,得到函数 的图象;
(Ⅱ)为了得到函数的图象,可以把函数的图象上所有的点 .
A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥
(3)函数的图象可以经过怎样的变化得到函数的图象?(写出一种即可)
【答案】(1)6,6;(2)(Ⅰ);(Ⅱ)D;(3)函数的图象先将纵坐标变为原来的倍,横坐标不变,得到;再向左平移2个单位,向下平移1个单位即可得到函数的图象.
【解析】分析:(1)根据阅读材料中的规律即可求解;
(2)根据阅读材料中的规律以及“左减右加,上加下减”的规律即可求解;
(3)首先把函数解析式变为==,然后根据(2)的规律即可求解.
(1)把函数的图象上各点的纵坐标变为原来的6倍,横坐标不变,设y′=6y,x′=x,将y=,x=x′带入xy=1可得y′=,得到函数的图象;
也可以把函数的图象上各点的横坐标变为原来的6倍,纵坐标不变,设y′=y,x′=6x,将y=y′,x=带入xy=1可得y′=,得到函数的图象;
得到函数的图象.
(2)(Ⅰ)函数的图象上所有的点经过“纵坐标变为原来的4倍,横坐标不变”的变化后,得到的图象;的图象经过“向右平移1个单位长度”的变化后,得到的图象;的图象经过“向下平移2个单位长度”的变化后,得到的图象.
(Ⅱ)为了得到函数的图象,可以把函数的图象上所有的点先向下平移2个单位长度,得到的图象,再把的图象向右平移个单位长度,得到的图象;最后把的图象的横坐标变为原来的2倍,得到的图象,即的图象.
(3)∵==,∴函数的图象先将纵坐标变为原来的倍,横坐标不变,得到;再向左平移2个单位,向下平移1个单位即可得到函数的图象.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P的坐标为(,),点Q的坐标为(,),且,,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q 的“相关矩形”的示意图.
(1)已知点A的坐标为(1,0).
①若点B的坐标为(3,1)求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为,点M的坐标为(m,3).若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中:(1)垂直于弦的直径平分这条弦并且平分这条弦所对的两条弧;(2)半圆是弧;(3)长度相等的弧是等弧;(4)平分弦的直径垂直于这条弦;正确的个数有( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料并回答问题:
材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为. ①
古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.
我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:. ②
下面我们对公式②进行变形:
.
这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.
问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.
(1)求△ABC的面积;
(2)求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com