【题目】在边长为3的正方形ABCD中,点E、F、G、H分别在AB、BC、CD、DA边上,且满足EB=FC=GD=HA=1,BD分别与HG、HF、EF相交于M、O、N给出以下结论:
①HO=OF;②OF2=ONOB;③HM=2MG;④S△HOM=,其中正确的个数有( )
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】
根据正方形的性质、全等三角形的判定和性质、角平分线的性质定理一一判断即可.
作MP⊥AD于P,MQ⊥CD于Q.连接OG.
∵四边形ABCD是正方形,∴AD∥BC,AD=BC.
∵AH=CF,∴DH=BF,∠ODH=∠OBF.
∵∠DOH=∠BOF,∴△DOH≌△BOF,∴OH=OF,故①正确.
∵∠FON=∠FOB,∠OFN=∠OBF=45°,∴△OFN∽△OBF,∴OF2=ONOB,故②正确.
∵∠MDH=∠MDG,MP⊥AD于P,MQ⊥CD于Q,∴MP=MQ.
∵2,∴HM=2MG,故③正确.
∵正方形EFGH的面积=5,∴S△OHG的面积,∴S△OMH,故④正确.
故选D.
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
(1)如图1,当t=3时,求DF的长.
(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.
(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中.
(1)作出△ABC关于轴对称的,并写出三个顶点的坐标: ( ),( ),( );
(2)直接写出△ABC的面积为 ;
(3)在轴上画点P,使PA+PC最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边中,是边上一点,连接,将绕点逆时针旋转得到,连接,若,,则有以下四个结论:①是等边三角形;②;③的周长是10;④.其中正确结论的序号是( )
A.②③④B.①③④C.①②④D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=(x>0)的图象相交于A(2,3)、B(a,1)两点.
(1)求这两个函数的表达式;
(2)求证:AB=2BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在图(1)、(2)所示的△ABC中,AB=4,AC=6.将△ABC沿图示中的虚线剪开裁剪办法已在图上标注,对于各图中剪下的两个阴影三角形而言,下列说法正确的是( )
A. 只有(1)中的与△ABC相似 B. 只有(2)中的与△ABC相似
C. 都与△ABC相似 D. 都与△ABC不相似
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D,F在AB上,点E,G在AC上,DE∥FG∥BC,且S△ADE=S四边形DFGE=S四边形FBCG
(1)求DE:FG:BC的值;
(2)若AB=10,AC=15,BC=12,求四边形DFGE的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com