精英家教网 > 初中数学 > 题目详情
(2012•泰州一模)如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若AB=6,BD=3,求BC和AE的长.
分析:(1)求出AC平分∠EAF,推出OC∥AE,推出OC⊥DE,根据切线判定推出即可;
(2)根据直角三角形斜边上中线性质求出BC=OB=3,根据三角形面积公式求出CF,得出CE,根据勾股定理求出AE即可.
解答:(1)解:
DE与⊙O的位置关系式相切.
理由是:连接OC,
∵AE⊥CD,CF⊥AB,CE=CF,
∴∠EAC=∠CAF,
∵OA=OC,
∴∠CAF=∠OCA,
∴∠OCA=∠EAC,
∴OC∥AE,
∵AE⊥DE,
∴OC⊥DE,
∵OC为⊙O半径,
∴DE是⊙O的切线,
即DE与⊙O的位置关系式相切.

(2)解:
∵OC⊥DE,
∴∠OCD=90°,
∵AB=6,BD=3,
∴OB=3=BD,
即B为OD中点,
∴CB=OB=BD=3,
∵AB是直径,
∴∠ACB=90°,
在△ACB中,AB=6,BC=3,由勾股定理得:AC=3
3

在△ACB中,由三角形的面积公式得:
1
2
×AC×BC=
1
2
×AB×CF,
1
2
×3
3
×3=
1
2
×6×CF,
CF=
3
3
2

∵CE=CF,
∴CE=
3
3
2

在Rt△AEC中,AC=3
3
,CE=
3
3
2
,由勾股定理得:AE=
9
2

即AE=
9
2
,BC=3.
点评:本题考查了切线的性质和判定,三角形的面积,等腰三角形的性质和判定,平行线的性质和判定,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•泰州一模)使
3x-1
有意义的x的取值范围是
x
1
3
x
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰州一模)月球距离地球表面约为384000000米,将这个距离用科学记数法(保留两个有效数字)表示为
3.8×108
3.8×108
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰州一模)(1)计算:
12
+|
3
-2
|+2-1-sin30°.    
(2)化简:
a-2
a2-1
÷(
1
a-1
-1).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰州一模)已知Rt△ABC,∠ACB=90°,AC=BC=4,点O是AB中点,点P、Q分别从点A、C出发,沿AC、CB以每秒1个单位的速度运动,到达点C、B后停止.连接PQ、点D是PQ中点,连接CD并延长交AB于点E.
(1)试说明:△POQ是等腰直角三角形;
(2)设点P、Q运动的时间为t秒,试用含t的代数式来表示△CPQ的面积S,并求出S的最大值;
(3)如图2,点P在运动过程中,连接EP、EQ,问四边形PEQC是什么四边形,并说明理由;
(4)求点D运动的路径长(直接写出结果).

查看答案和解析>>

同步练习册答案