精英家教网 > 初中数学 > 题目详情
6、平行四边形ABCD中,经过对角线交点O的直线分别交AB、CD于点E、F.则图中全等的三角形共有(  )
分析:根据平行四边形的性质所能得到的相等边和相等角来判断图中有多少全等的三角形.
解答:解:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,OA=OC,OD=OB;
∠OAB=∠OCD,∠OBD=∠ODC;
①∵AD=BC,AB=CD,BD=BD,
∴△ABD≌△CDB(SSS);同理可证得:△ABC≌△CDA.
②∵OA=OC,OB=OD,AB=CD,
∴△OAB≌△OCD(SSS);同理可证得:△OAD≌△OCB.
③∵OA=OC,∠OAB=∠OCD,∠AOE=∠COF,
∴△AOE≌△COF(ASA);同理可证得:△BOE≌△DOF.
所以图中共有6对全等三角形,故选C.
点评:此题主要考查的是平行四边形的性质以及全等三角形的判定,平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,高h=4,则平行四边形ABCD的面积S=
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,AE:EB=1:2,S△AEF=3,则S△FCD=
27
27

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,E是BD上一点,AE的延长线交DC于点F,交BC的延长线于点G.求证:
(1)△ABE∽△FDE;
(2)AE2=EF•EG.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,下列结论:
①BE=DF;②AG=GH=HC;③2EG=BG;④S△ABC=5S△AGE
其中正确的有
①②③④
①②③④
.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6
3
,AE=6,求AF的长.

查看答案和解析>>

同步练习册答案