精英家教网 > 初中数学 > 题目详情
12.如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+b经过点A(-6,0)B(0,3)两点,点C、D在直线AB上,C的纵坐标为4,点D在第三象限,且△OBC与△OAD的面积相等,则点D的坐标为(-8,-1).

分析 利用待定系数法求得直线的解析式,进而求得C的坐标,根据△OBC与△OAD的面积相等,求得D的纵坐标,代入直线解析式即可求得D的坐标.

解答 解:∵直线y=kx+b经过点A(-6,0)、B(0,3)两点,
∴$\left\{\begin{array}{l}{-6k+b=0}\\{b=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=3}\end{array}\right.$,
∴直线为y=$\frac{1}{2}$x+3;
∵点C在直线AB上,C的纵坐标为4,
∴4=$\frac{1}{2}$x+3,
解得x=2,
设D(m,n),
∵△OBC与△OAD的面积相等,
∴$\frac{1}{2}$AO•|n|=$\frac{1}{2}$×3×2,
∴3|n|=3,
∴|n|=1,
点D在第三象限,
∴n=-1,
∴D(m,-1),
代入y=$\frac{1}{2}$x+3得,-1=$\frac{1}{2}$m+3,
解得m=-8,
∴D(-8,-1).
故答案为:(-8,-1).

点评 本题考查了一次函数与坐标轴的交点坐标,直线上的点的特点,三角形的面积等,根据△OBC与△OAD的面积相等列出等式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.解下列方程:
(1)4x-3(5-x)=6;
(2)$\frac{2-x}{2}-3=\frac{x}{3}-\frac{2x+3}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.写出一个图象位于第二、四象限的正比例函数的表达式是y=-x(答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.(1)计算:${(-1)^{2013}}-{(\frac{1}{2})^{-2}}+\sqrt{16}-cos{60°}$
(2)化简求值:$\frac{{a}^{2}-1}{{a}^{2}-2a+1}$+$\frac{2a-{a}^{2}}{a-2}$÷a,其中a=$\sqrt{2}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.阅读下面的文字,解答问题:
大家知道$\sqrt{2}$是无理数,而无理数是无限不循环小数,因此$\sqrt{2}$的小数部分我们不可能全部地写出来,于是我们就用$\sqrt{2}$-1来表示$\sqrt{2}$的小数部分,又例如:$\sqrt{7}$的整数部分为2,所以小数部分为($\sqrt{7}$-2).
请解答:
(1)如果$\sqrt{5}$的小数部分为a,$\sqrt{13}$的整数部分为b,求a+b-$\sqrt{5}$的值;
(2)已知:10+$\sqrt{3}$=x+y,其中x是整数,且0<y<1,求x-y的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:
单价(元/件)3034384042
销量(件)4032242016
(1)通过对上面表格中的数据进行分析,发现销量y(件)与单价x(元/件)之间存在一次函数关系,求y关于x的函数关系式(不需要写出函数自变量的取值范围);
(2)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?
(3)为保证产品在实际试销中销售量不得低于30件,且工厂获得得利润不得低于400元,请直接写出单价x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知等腰△ABC,AB=AC=5,BC=4,请建立适当的平面直角坐标系,并求出A、B、C三点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接BG,DE,DE交GF于点H.
(1)求证:△BCG≌△DCE;
(2)求证:△BCG∽△DGH.

查看答案和解析>>

同步练习册答案