精英家教网 > 初中数学 > 题目详情
(2011•绍兴县模拟)如图,已知在矩形ABCD中,AB=4,BC=6,P是线段AD上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E,则BE的取值范围是(  )
分析:由于BE的最大值为AB的长即2,因此只需求得BE的最小值即可;设AP=x,AE=y,根据△AEP∽△DPC可得AP•PD=AE•CD,用x、y表示出其中的线段,即可得到关于x、y的函数关系式,根据函数的性质即可求得y的最大值,由此可求得BE的最小值,即可得到BE的取值范围.
解答:解:∵四边形ABCD为矩形,
∴∠A=∠D,
∴∠AEP+∠APE=90°,
∵PE⊥PC
∴∠APE+∠CPD=90°,
∴∠AEP=∠DPC,
∴△AEP∽△DPC;
设DP=x,BE=y,则AE=4-y,AP=6-x,
∵△AEP∽△DPC,
CD
PA
=
PD
EA
,代入整理可得:y=
1
4
x2-
3
2
x+4=
1
4
(x-3)2+
7
4

故BE的最小值为
7
4
,又因为BE的最大值为4,
∴BE的范围为
7
4
≤BE<4.
故选B.
点评:此题主要考查的是矩形的性质、相似三角形的判定和性质以及二次函数最值的应用,关键是证明△AEP∽△DPC,这一点不容易想到,难度较大,另外要求我们熟练掌握二次函数的最值的求解办法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•绍兴县模拟)如图,菱形ABCD的周长为16,以AB为一边画等边△ABE,点E、D在直线AB的同侧,在AC上找一点P,使EP+DP最小,则这个最小值为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2011•绍兴县模拟)阅读材料:
小明在做课本阅读材料中的一个拼图游戏“对于任意剪一个三角形纸片,把这个三角形纸片剪2刀,分成3块,再把它们拼成一个长方形.”时遇到了困难,经提示他想到从特殊到一般的数学思想,于是他先剪了一个直角三角形纸片,把这个直角三角形纸片沿中位线剪1刀,分成2块(如图1),很快就拼成了一个与原三角形面积相等的矩形.
解决问题:(请在图中画出分割线及拼成的图形)

(1)请你在图2中用类似的方法把三角形剪一刀分成2块,然后拼成平行四边形;
(2)请你在图3中把三角形剪两刀分成3块,然后拼成矩形;
(3)应用拓展:
如图4是一个正方形纸片,把这个正方形纸片剪2刀,分成3块,再拼成一个与原正方形面积相等的三角形,且该三角形既不是等腰三角形,也不是直角三角形(给出两种不同的方案).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•绍兴县模拟)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,交OA于点F,连接EF并延长EF交AB于G,且EG⊥AB.
(1)求证:直线AB是⊙O的切线;
(2)若EF=2FG,AB=12
3
,求图中阴影部分的面积;
(3)若EG=9,BG=12,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•绍兴县模拟)是否存在三边为连续自然数的三角形,使得:
(1)最大角是最小角的两倍(如图1中,∠A=2∠B,且∠A为最大角,∠B为最小角);
(2)最大角是最小角的三倍(如图2中,∠A=3∠B,且∠A为最大角,∠B为最小角);
若存在,求出该三角形三边长;若不存在,请说明理由.(下列各图供探索用)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•绍兴县模拟)已知菱形OABC中,A(0,5),B(3,1),连接AC交x轴于M,线段OA上有一动点P,以每秒1个单位的速度从点O出发向线段的另一端点A运动,到点A后停止运动,运动时间为t秒,过P作PE⊥AC交AB于E,连接PB、BM(如图1)
(1)写出点C、M的坐标;
(2)证明△BME为直角三角形?
(3)连接PB,若∠PBM=∠OAB,求tan∠ABP的值;
(4)如图2,若在线段OC上有一点Q与点P同时从点O出发,以相同的速度向点C运动.问是否存在t的值,使△PQE为等腰三角形,若存在,求出运动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案