精英家教网 > 初中数学 > 题目详情
16.为了解六年级学生的课外作业情况,某学校从该年级学生中随机抽取了若干名学生,对他们的课外作业时间(单位:min)进行调查,并将收集的数据整理绘制成如下两幅不完整的图表,请根据图中信息,解答下列问题:
 课外作业时间
(分组)
 人数
(频数)
 30~45 5
 45~60 12
 60~75 a
 75~90 10
 90~105 b
(1)本次调查共抽取了50名学生,a=20,b=3;
(2)求出作业时间为75~90min的部分对应的扇形圆心角的度数;
(3)请根据上表绘制频数直方图.

分析 (1)由 45~60的人数及其百分比可得总人数,总人数乘以60~75的百分比可得a的值,根据各分组人数之和等于总数可得b的值;
(2)用360°乘以75~90min的部分的人数所占比例即可;
(3)根据频数分布直方图的作图可得.

解答 解:(1)本次调查共抽取了12÷24%=50名学生,
则a=50×40%=20,b=50-(5+12+20+10)=3,
故答案为:50,20,3;

(2)360°×$\frac{10}{50}$=72°,
答:作业时间为75~90min的部分对应的扇形圆心角的度数为72°;

(3)如下图所示:

点评 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.在等式y=x2+bx+c中,当x=-1时,y=0;当x=1时,y=-4.求(b-c)2017的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,请看下面的案例.
Ⅰ、如图1,已知△ABC,分别以AB、AC为边,在BC同侧作等边三角形ABD和等边三角形ACE,连接CD,BE.
(1)通过证明△ADC≌△ABE,可以得到DC=BE;
Ⅱ、如图2,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,顺次连接E、F、G、H,得到四边形EFGH,我们称四边形EFGH为四边形ABCD的中点四边形,连接BD,利用三角形中位线的性质,可得EH∥BD,EH=$\frac{1}{2}$BD,同理可得FG∥BD,FG=$\frac{1}{2}$BD,所以EH∥FG,EH=FG,所以四边形EFGH是平行四边形;
拓展应用
(2)如图3,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想四边形EFGH的形状,并证明;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,四边形EFGH的形状是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,AB∥CD,∠EFG=∠EGF,∠BGF=146°,则∠1的度数为68°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,∠AOB=60°,点E在∠AOB的平分线上,EC⊥OA,且CE=1,点D是OB上的一个动点,当ED取最小值时,线段CD的长度为$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知坐标平面上有两个二次函数y=a(x+1)(x-7),y=b(x+1)(x-15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x-15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠(  )
A.向左平移4单位B.向右平移4单位C.向左平移8单位D.向右平移8单位

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)完成下面的证明.
如图,已知AB∥CD,直线EF分別交直线AB、CD于点M、N.求证:∠EMB=∠MND.
证明:若∠EMB≠∠MND,过点M作直线A1B1
使∠EMB1=∠MND  
∴A1B1∥CD.
又∵AB∥CD
∴过点M 就有两条直线AB、A1B1平行于直线CD.
这与过直线外一点有且只有一条直线与这条直线平行矛盾.
说明∠EMA=∠MND是不对的.
于是有∠EMB=∠MND.
(2)求证:两条平行线被笫三条直线所截,同旁内角互补.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.现有五张正面图形分别是平行四边形、圆、等边三角形、正五边形、菱形的卡片,它们除正面图形不同,其它完全相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,卡片的正面图形既是中心对称图形又是轴对称图形的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.以$\frac{1+\sqrt{3}}{2}$和$\frac{-1+\sqrt{3}}{2}$为根的一个一元二次方程是(  )
A.x2-$\sqrt{3}$x+$\frac{1}{2}$=0B.x2+$\sqrt{3}$x+$\frac{1}{2}$=0C.x2-$\sqrt{3}$x+1=0D.x2+$\sqrt{3}$x-$\frac{1}{2}$=0

查看答案和解析>>

同步练习册答案