精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,AD∥BC,AB=CD,延长CB到E,使EB=AD,连接AE.
(1)求证:AE=CA;
(2)若AC⊥AB,AB=2,∠ABC=60°,求AC的长.
分析:(1)若要证明AE=CA,则可转化为证明△AEB≌△CAD即可;
(2)由AC⊥AB,可得△BAC是直角三角形,因为∠ABC=60°,所以∠ACB=30°,利用在直角三角形中,30°角所对的直角边等于斜边的一半可求出BC的长,根据勾股定理即可求出AC的长.
解答:解:(1)证明:在梯形ABCD中,AD∥BC,
∴∠BAD=∠ABE,
∵AB=CD,
∴∠BAD=∠D,
∴∠ABE=∠D,
在△AEB和△CAD中,
AB=CD
∠ABE=∠D
EB=AD

∴△AEB≌△CAD(SAS),
∴AE=CA;

(2)∵AC⊥AB,
∴∠BAC=90°,
∵∠ABC=60°,
∴∠ACB=30°,
∴BC=2AB=4,
在Rt△ABC中,由勾股定理可求得AC=2
3
点评:本题考查了等腰梯形的性质、全等三角形的判定和性质以及勾股定理的运用和含30度角的直角三角形的性质,是重点内容,要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案