当x=2时,抛物线y=ax2+bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴交于点A、B.
(1)求该抛物线的关系式;
(2)若点M(x,y1),N(x+1,y2)都在该抛物线上,试比较y1与y2的大小;
(3)D是线段AC的中点,E为线段AC上一动点(A、C两端点除外),过点E作y轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,则说明理由.
解:(1)由题意可设抛物线的关系式为y=a(x-2)2-1
因为点C(0,3)在抛物线上
所以3=a(0-2)2-1,即a=1
所以,抛物线的关系式为y=(x-2)2-1=x2-4 x+3
(2)∵点M(x,y1),N(x+1,y2)都在该抛物线上
∴y1-y2=(x2-4 x+3)-[(x+1)2-4(x+1)+3]=3-2 x
当3-2 x>0,即时,y1>y2
当3-2 x=0,即时,y1=y2
当3-2 x<0,即时,y1<y2
(3)令y=0,即x2-4 x+3=0,得点A(3,0),B(1,0),线段AC的中点为D(,)
直线AC的函数关系式为y=-x+3
因为△OAC是等腰直角三角形,所以,要使△DEF与△OAC相似,△DEF也必须是等腰直角三角形.由于EF∥OC,因此∠DEF=45°,所以,在△DEF中只可能以点D、F为直角顶点.
①当F为直角顶点时,DF⊥EF,此时△DEF∽△ACO,DF所在直线为
由,解得,(舍去)
将代入y=-x+3,得点E(,)
②当D为直角顶点时,DF⊥AC,此时△DEF∽△OAC,由于点D为线段AC的中点,因此,DF所在直线过原点O,其关系式为y=x.
解x2-4 x+3=x,得,(舍去)
将代入y=-x+3,得点E(,) …………12分
科目:初中数学 来源: 题型:
已知抛物线y=ax2+x+2.
1.当a=-1时,求此抛物线的顶点坐标和对称轴
2.若代数式-x2+x+2的值为正整数,求x的值;
3.若a是负数时,当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0). 若点M在点N的左边,试比较a1与a2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012届北京门头沟中考二模数学试卷(带解析) 题型:解答题
已知抛物线y=ax2+x+2.
【小题1】当a=-1时,求此抛物线的顶点坐标和对称轴
【小题2】若代数式-x2+x+2的值为正整数,求x的值;
【小题3】若a是负数时,当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0). 若点M在点N的左边,试比较a1与a2的大小.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年北京门头沟中考二模数学试卷(解析版) 题型:解答题
已知抛物线y=ax2+x+2.
1.当a=-1时,求此抛物线的顶点坐标和对称轴
2.若代数式-x2+x+2的值为正整数,求x的值;
3.若a是负数时,当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0). 若点M在点N的左边,试比较a1与a2的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com