精英家教网 > 初中数学 > 题目详情
8.如图,矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD于E,若∠OAE=24°,则∠BAE的度数是(  )
A.24°B.33°C.42°D.43°

分析 由直角三角形的性质求出∠AOE=66°,由矩形的性质得出OA=OB,由等腰三角形的性质和三角形内角和定理得出∠OAB=∠OBA=57°,∠BAE=∠OAB-∠OAE,即可得出结果.

解答 解:∵AE⊥BD,
∴∠AEO=90°,
∴∠AOE=90°-∠OAE=66°,
∵四边形ABCD是矩形,
∴OA=OC=$\frac{1}{2}$AC,OB=OD=$\frac{1}{2}$BD,AC=BD,
∴OA=OB,
∴∠OAB=∠OBA=$\frac{1}{2}$(180°-66°)=57°,
∴∠BAE=∠OAB-∠OAE=33°;
故选:B.

点评 本题考查了矩形的性质、等腰三角形的性质、三角形内角和定理、直角三角形的性质;熟练掌握矩形的性质,由等腰三角形的性质得出∠OAB=57°是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.若x-1=$\sqrt{5}$,则(x+1)2-4(x+1)+4的值为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:
(1)|-5|+(-3)2×(π-2015)0+${({\frac{1}{3}})^{-2}}$+(-1)2018
(2)$-{1^2}×{2^3}÷{({\frac{2}{3}})^2}+20×({\frac{3}{4}-\frac{4}{5}+\frac{7}{10}})$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.实数a、b、c在数轴上的位置如图所示,试化简:|c-b|+|b-a|-|c|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,并求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在△ABC中,∠BAC=50°,把△ABC沿EF折叠,C对应点恰好与△ABC的外心O重合,则∠CFE的度数是(  )
A.40°B.45°C.50°D.55°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,下列结论正确的有(  )
①AD=BD=BC;②△BCD≌△ABC;③AD2=AC•DC;④点D是AC的黄金分割点.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.
(1)将△AOB绕点O逆时针旋转90°,得到△A1O1B1,画出△A1O1B1,并写出点B1的坐标为(-2,3);
(2)再将△A1O1B1向左平移3个单位长度得到△A2O2B2,画出△A2O2B2
(3)写出点A在旋转和平移变换过程中所经过的总路径长为$\frac{\sqrt{10}}{2}$π+3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知直线y=x-2t与抛物线y=a(x-t)2+k(a>0,t≥0,a,t,k为已知数),在t=2时,直线刚好经过抛物线的顶点.
(1)求k的值.
(2)t由小变大时,两函数值之间大小不断发生改变,特别当t大于正数m时,无论自变量x取何值,y=x-2t的值总小于y=a(x-t)2+k的值,试求a与m的关系式.
(3)当0≤t<m时,设直线与抛物线的两个交点分别为A,B,在a为定值时,线段AB的长度是否存在最大值?若有,请求出相应的t的取值;若没有,请说明理由.

查看答案和解析>>

同步练习册答案