精英家教网 > 初中数学 > 题目详情
9.如图,矩形ABCD中,AB=6cm,BC=12cm,点P从A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动.如果P、Q分别是从A、B同时出发,
(1)那么几秒后,△PBQ的面积等于9平方厘米?
(2)那么几秒后,点P与点Q之间的距离可能为5厘米吗?说明理由.
(3)那么几秒后,五边形APQCD的面积最小?最小值是多少?

分析 (1)设xs后,△PBQ的面积等于9cm2,根据${S_{△PBQ}}=\frac{1}{2}PB•BQ$,列方程求解可得;
(2)由PB2+BQ2=PQ2得(6-x)2+(2x)2=52,即可判断;
(3)由S五边形APQCD=S矩形ABCD-S△PBQ=AB•BC-$\frac{1}{2}$PB•BQ=72-6x+x2=(x-3)2+63,即可得答案.

解答 解:(1)设xs后,△PBQ的面积等于9cm2
此时,AP=xcm,PB=(6-x)cm,BQ=2xcm.
由${S_{△PBQ}}=\frac{1}{2}PB•BQ$,得  $9=\frac{1}{2}(6-x)•2x$.
解得 x1=x2=3.
答:3秒后,△PBQ的面积等于9平方厘米;

(2)点P与点Q之间的距离不可能为5厘米.
由PB2+BQ2=PQ2得(6-x)2+(2x)2=52
整理,得 5x2-12x+11=0,
容易判断此方程无实数根.
答:点P与点Q之间的距离不可能为5厘米;

(3)由S五边形APQCD=S矩形ABCD-S△PBQ
=AB•BC-$\frac{1}{2}$PB•BQ
=6×12-$\frac{1}{2}$×(6-x)•2x
=72-6x+x2
=(x-3)2+63,
∵(x-3)2≥0,
∴当x-3=0时,即(x-3)2的值为0时是最小值,
∴当x=3时,(x-3)2+63有最小值,此时为63.
答:3秒后,五边形APQCD的面积最小,最小值是63cm2

点评 本题主要考查二次函数的应用,根据三角形的面积、勾股定理、五边形的面积列出方程或函数解析式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.(1)对于任意不相等的两个实数a、b,定义运算※如下:a※b=$\frac{\sqrt{a+b}}{a-b}$,例如3※2=$\frac{\sqrt{3+2}}{3-2}$=$\sqrt{5}$,求8※12的值.
(2)先化简,再求值:$\frac{2}{a-1}$+$\frac{{a}^{2}-4a+4}{{a}^{2}-1}$÷$\frac{a-2}{a+1}$,其中a=1+$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.探究:换元法是重要的数学思想方法,用换元法可解决许多数学问题,请看例题:
解方程:x4-2x2-3=0.
解:设x2=y,则原方程化为y2-2y-3=0.
解关于y的一元二次方程,得y1=-1,y2=3.
当y=-1时,即x2=-1,此时方程无实数根;
当y=3时,即x2=3解得x1=$\sqrt{3}$,x2=-$\sqrt{3}$.
所以原方程的根是x1=$\sqrt{3}$,x2=-$\sqrt{3}$.
请你用换元法解下列方程:
(1)$\frac{1}{{x}^{2}}$-$\frac{5}{x}$+6=0;
(2)(x2-2)-2(x2-2)-8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,正方形ABCD的边长为10,E是边DC上一点,F是边BC上一点,且DE=CF.问:当点E在什么位置时,△AEF的面积最小?最小面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=12cm,动点P从点B开始沿边BA以2cm/s的速度向点A移动,过点P作PE⊥BC,PF⊥AC,设点P移动的时间为t,四边形PECF的面积为S.
(1)写出S与t的函数解析式及t的取值范围;
(2)求出当t为何值时,四边形PECF的面积最大?最大是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.有这样一对数:一个数的数字排列完全颠倒过来就变成另一个数,简单地说就是顺序相反的两个数,我们把这样的一对数互称为反序数.比如:123的反序数是321,4056的反序数是6504.根据以上阅读材料,回答下列问题:
(1)已知一个三位数,其数位上的数字为连续的三个自然数,求证:原三位数与其反序数之差的绝对值等于198;
(2)若一个两位数与其反序数之和是一个完全平方数,求满足上述条件的所有两位数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.数学兴趣小组遇到这样一个问题:一个数乘以2后加8,然后除以4,再减去这个数的$\frac{1}{2}$,则结果为多少?小组内 5成员分别令这个数为-5、3、-4、6、2,发现结果一样.
(1)请从上述5个数中任取一个数计算结果;
(2)有这样一个猜想:无论这个数是几,其计算的结果一样,这个猜想对吗?请说明理由.如果你觉得这个猜想不对,请你提出一个新的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.阅读下面材料并解决有关问题:
我们知道:|x|=$\left\{\begin{array}{l}{x(x>0)}\\{0(x=0)}\\{-x(x<0)}\end{array}\right.$现在我们可以用这一结论来化简含有绝对值的代数式,如果现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别为|x+1|与|x-2|的零点值).在实数范围内,零点值x=-1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:
(1)x<-1;(2)-1≤x<2;(3)x≥2.从而化简代数式|x+1|+|x-2|可分以下3种情况:
(1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;
(2)当-1≤x<2时,原式=x+1-(x-2)=3;
(3)当x≥2时,原式=x+1+x-2=2x-1.
综上讨论,原式=$\left\{\begin{array}{l}{-2x+1(x<-1)}\\{3(-1≤x<2)}\\{2x-1(x≥2)}\end{array}\right.$
通过以上阅读,请你解决以下问题:
(1)|x+2|和|x-4|的零点值分别为-2和4;
(2)请仿照材料中的例子化简代数式|x+2|+|x-4|.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,则所截去小正方形的边长是2cm.

查看答案和解析>>

同步练习册答案