精英家教网 > 初中数学 > 题目详情
反比例函数和正比例函数的图象都经过点A(-1,-2),则这两个函数的解析式分别是        
【答案】分析:设反比例函数解析式为y=,正比例函数解析式为y=kx,将A(-1,-2)代入解析式即可.
解答:解:设反比例函数解析式为y=
把A(-1,-2)代入解析式得,-2=
解得k=2;
此反比例函数解析式为y=
设正比例函数的解析式为y=kx,
把A(-1,-2)代入解析式得,-2=-k,
解得k=2.
此正比例函数解析式为y=2x.
故答案为y=,y=2x.
点评:此题考查了待定系数法求函数解析式,掌握反比例函数和正比例函数解析式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数y=ax(a≠0)的图象与反比例函致y=
kx
(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=2x与某反比例函数图象的一个交点的横坐标为2.
(1)求这个反比例函数的关系式;
(2)在直角坐标系内画出这条直线和这个反比例函数的图象;
(3)试比较这两个函数性质的相似处与不同处;
(4)根据图象写出:使这两个函数值均为非负数且反比例函数大于正比例函数值的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:第30章《反比例函数》中考题集(23):30.3 反比例函数的应用(解析版) 题型:解答题

如图,已知正比例函数y=ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

科目:初中数学 来源:2012年辽宁省营口市中考数学模拟试卷(三)(解析版) 题型:解答题

如图,已知正比例函数y=ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《反比例函数》(05)(解析版) 题型:解答题

(2010•绵阳)如图,已知正比例函数y=ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

同步练习册答案