精英家教网 > 初中数学 > 题目详情
如图,直线y=
12
x+2分别交x、y轴于点A、C,P是该直线上在第一象限内的一点,PB精英家教网⊥x轴,B为垂足,S△ABP=9.
(1)求点P的坐标;
(2)设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴,T为垂足,当△BRT与△AOC相似时,求点R的坐标.
分析:(1)证明△AOC∽△ABP,利用线段比求出BP,AB的值从而可求出点P的坐标;
(2)设R点坐标为(x,y),求出反比例函数.又因为△BRT∽△AOC,利用线段比联立方程组求出x,y的值.
解答:解:(1)根据已知条件可得A点坐标为(-4,0),C点坐标为(0,2),
即AO=4,OC=2,
又∵S△ABP=9,
∴AB•BP=18,
又∵PB⊥x轴?OC∥PB,
∴△AOC∽△ABP,
AO
AB
=
OC
BP
4
AB
=
2
BP

∴2BP=AB,
∴2BP2=18,
∴BP2=9,
∵BP>0,
∴BP=3,
∴AB=6,
∴P点坐标为(2,3);

(2)设R点的坐标为(x,y),
∵P点坐标为(2,3),
∴反比例函数解析式为y=
6
x

又∵△BRT∽△AOC,精英家教网
∴①
AO
OC
=
BT
RT
时,有
4
2
=
x-2
y

则有
y=
6
x
2y=x-2

解得
x=
13
+1
y=
13
-1
2


AO
OC
=
RT
BT
时,有
4
2
=
y
x-2
精英家教网
则有
y=
6
x
y=2x-4

解得
x=-1
y=-6
(不在第一象限,舍去),或
x=3
y=2

故R的坐标为(
13
+1,
13
-1
2
),(3,2).
点评:本题考查的是一次函数的综合运用以及相似三角形的判定,难度中上.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线y=-
1
2
x+2与x轴交于C,与y轴交于D,以CD为边作矩形CDAB,点A在x轴上,双曲线y=
k
x
(k<0)经过点B与直线CD交于E,EM⊥x轴于M,则S四边形BEMC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=-
12
x+4分别与x轴,y轴交于点C、D,以O精英家教网D为直径作⊙A交CD于F,FA的延长线交⊙A于E,交x轴于B.
(1)求点A的坐标;
(2)求△ADF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=-
12
x+4与x轴、y轴分别交于C、D,以OD为直径作⊙A交CD于F,FA的延长线交⊙A于E,交x轴于B.
(1)设F(a,b),求以a,b为根的一元二次方程;
(2)求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=
12
x+2交x轴于A,交y轴于B
(1)直线AB关于y轴对称的直线解析式为
 

(2)直线AB绕原点旋转180度后的直线解析式为
 

(3)将直线AB绕点P(-1,0)顺时针方向旋转90度,求旋转后的直线解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•蒙山县一模)如图,直线y=
1
2
x-2
与x轴、y 轴分别交于点A 和点B,点C在直线AB上,且点C的纵坐标为-1,点D在反比例函数y=
k
x
的图象上,CD平行于y轴,S△OCD=
5
2
,则k的值为(  )

查看答案和解析>>

同步练习册答案