分析 (1)由△ABC是等边三角形,于是得到AB=AC=BC,∠B=∠ACD=60°,证得△BCE≌△ACD,根据全等三角形的性质即可得到结论;
(2)由(1)证得∠BCE=∠CAD,于是推出∠DAC+∠ACF=60°,根据外角的性质得到∠CFD=∠DAC+∠ACF,于是得到∠CFD=60°,根据直角三角形的性质即可得到结论.
解答 (1)证明:∵△ABC是等边三角形,
∴AB=AC=BC,∠B=∠ACD=60°,
在△BCE与△ACD中,$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠B}\\{CD=BE}\end{array}\right.$,
∴△BCE≌△ACD,
∴∠BCE=∠CAD;
(2)∠CFD=60°,AF=2HF,
∵∠BCE=∠CAD,∠ACF+∠CAF=60°,
∴∠DAC+∠ACF=60°,
∵∠CFD=∠DAC+∠ACF,
∴∠CFD=60°,
∵AH⊥CE,
∴∠HAF=30°,
∴AF=2HF.
点评 本题考查了全等三角形的判定和性质,等边三角形的性质,含30°角的直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 9根 | B. | 8根 | C. | 7根 | D. | 6根 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com