精英家教网 > 初中数学 > 题目详情
11.因式分解:
(1)$\frac{1}{2}$x2+2xy2+2y4            (2)4b2c2-(b2+c22
(3)a(a2-1)-a2+1             (4)(a+1)(a-1)-8.

分析 (1)首先提取公因式$\frac{1}{2}$,再利用完全平方公式进行二次分解即可;
(2)首先利用平方差公式进行分解因式,再利用完全平方公式进行二次分解即可;
(3)首先把后两项看成整体,然后再提公因式a2-1,最后再次利用平方差进行分解;
(4)首先利用平方差公式进行计算,然后再利用平方差公式进行分解.

解答 解:(1)原式=$\frac{1}{2}$(x2+4xy2+4y4)=$\frac{1}{2}$(x+2y22

(2)原式=(2bc+b2+c2)(2bc-b2-c2)=-(2bc+b2+c2)(b2+c2-2cb)=-(b+c)2(b-c)2

(3)原式=a(a2-1)-(a2-1)=(a2-1)(a-1)=(a+1)(a-1)2

(4)原式=a2-1-8=a2-9=(a-3)(a+3).

点评 本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.规定用符号[x]表示一个实数的整数部分,如[2.83]=2,[$\sqrt{5}$]=2,则[$\sqrt{24}$-3]=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,AB=AC,点D、E分别在AC、BC上,BD、AE交于点F,连接FC,∠BAC=∠BFE=2∠EFC.
(1)如图1,当∠BAC=90°时,则线段BF与CF的数量关系为BF=$\sqrt{2}$CF;
(2)如图2,当∠BAC=60°时,求证:BF=$\frac{2}{3}\sqrt{3}$FC;
(3)如图3,在(2)的条件下,将△ACE沿AE翻折,使点C与点G重合,AG分别交BC、BD于M、N,若MG=$\sqrt{7}$,求FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知一次函数y=kx+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式,并判断点(2,-3)是否在函数图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为保护学生的身体健康,某中学课桌椅的高度都是按一定的关系配套设计的,下表列出5套符合条件的课桌椅的高度:
椅子高度x(cm)4542393633
桌子高度y(cm)8479746964
(1)假设课桌的高度为ycm,椅子的高度为xcm,请确定y与x的函数关系式;
(2)现有一把高38cm的椅子和一张高72.2cm的课桌,它们是否配套?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知a、b为两个连续的整数,且a<2$\sqrt{11}$<b,则a+b=13.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某农户共摘收水蜜桃1920千克,为寻求合适的销售价格,进行了6天试销,试销情况如下:
第1天第2天第3天第4天第5天第6天
售价x(元/千克)20181512109
销售量y(千克)4550607590100
由表中数据可知,试销期间这批水蜜桃的每天销售量y(千克)与售价x(元/千克)之间满足我们曾经学过的某种函数关系.若在这批水蜜桃的后续销售中,每天的销售量y(千克)与售价x(元/千克)之间都满足这一函数关系.
(1)你认为y与x之间满足什么函数关系?并求y关于x的函数表达式.
(2)在试销6天后,该农户决定将这批水密桃的售价定为15元/千克.
①若每天都按15元/千克的售价销售,则余下的水蜜桃预计还要多少天可以全部售完?
②该农户按15元/千克的售价销售20天后,发现剩下的水蜜桃过于成熟,必须在不超过2天内全部售完,因此需要重新确定一个售价,使后面2天都按新的售价销售且能如期全部售完,则新的售价最高可以定为多少元/千克?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某公园购进一批平均高度为2m的某种树苗.为了掌握树的生长情况,树苗栽种后,园林工作者对其进行了几年的观测,并记录了每年末这种树的平均高度,如表:
栽后时间/年012345678
树高/m2.02.63.23.84.44.85.25.66.0
(1)这种树从栽种第几年开始,生长变得缓慢?
(2)栽种后的前4年,每年生长多少米?第5年后每年生长多少米?
(3)请写出栽种后的前4年,树高h1(m)与栽种的时间t(年)之间的函数关系式;
(4)请写出栽种第5年以后,树高h2(m)与栽种后的时间t(年)之间的函数关系式;
(5)这种树按表中的生长速度,求出第11年末树高是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第8步时,棋子所处位置的坐标是(9,2);当走完第2016步时,棋子所处位置的坐标是(2016,672).

查看答案和解析>>

同步练习册答案