精英家教网 > 初中数学 > 题目详情
已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.精英家教网
(1)求证:OE=OF;
(2)若点O为CD的中点,求证:四边形DECF是矩形.
分析:(1)由于CE平分∠BCD,那么∠DCE=∠BCE,而EF∥BC,于是∠OEC=∠BCE,等量代换∠OEC=∠DCE,那么OE=OC,同理OC=OF,等量代换有OE=OF;
(2)由于O是CD中点,故OD=OC,而OE=OF,那么易证四边形DECF是平行四边形,又CE、CF是∠BCD、∠DCG的角平分线,∠BCD+∠DCG=180°那么易得∠ECF=90°,从而可证四边形DECF是矩形.
解答:证明:(1)∵CE平分∠BCD、CF平分∠GCD,
∴∠BCE=∠DCE,∠DCF=∠GCF,(1分)
∵EF∥BC,
∴∠BCE=∠FEC,∠EFC=∠GCF,(1分)
∴∠DCE=∠FEC,∠EFC=∠DCF,(1分)
∴OE=OC,OF=OC,
∴OE=OF;(2分)

(2)∵点O为CD的中点,
∴OD=OC,
又OE=OF,
∴四边形DECF是平行四边形,(2分)
∵CE平分∠BCD、CF平分∠GCD,
∠DCE=
1
2
∠BCD,∠DCF=
1
2
∠DCG
,(2分)
∠DCE+∠DCF=
1
2
(∠BCD+
1
2
∠DCG)=90°
,(2分)
即∠ECF=90°,
∴四边形DECF是矩形.(1分)
点评:本题利用了角平分线的定义、平行线的性质、等角对等边、等量代换、平行四边形的判定、矩形的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

39、已知:如图,在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD相交于点O.求证:O是BD的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知,如图,在四边形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
请设计两种不同的分法,将四边形ABCD分割成四个三角形,使得分割成的每个三角形都是等腰三角形.画法要求如下:
(1)两种分法只要有一条分割线段位置不同,就认为是两种不同的分法;
(2)画图工具不限,但要求画出分割线段;
(3)标出能够说明不同分法所得三角形的内角度数,例如样图;
(4)不要求写出画法,不要求证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在四边形ABCD中,AD∥BC,AC⊥BC,点E、F分别是边AB、CD的中点,AF=CE.求证:AD=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求证:AB=BC;
(2)当BE⊥AD于E时,试证明:BE=AE+CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.

查看答案和解析>>

同步练习册答案