精英家教网 > 初中数学 > 题目详情
8.如图,抛物线顶点坐标为点C(2,8),交x轴于点A (6,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点Q (x,0)是线段OA上的一动点,过Q点作x轴的垂线,交抛物线于P点,交直线BA于D点,求PD与x之间的函数关系式并求出PD的最大值;
(3)x轴上是否存在一点Q,过点Q作x轴的垂线,交抛物线于P点,交直线BA于D点,使以PD为直径的圆与y轴相切?若存在,求出Q点的坐标;若不存在,请说明理由.

分析 (1)用待定系数法求出抛物线解析式,进而得出点B坐标,再用待定系数法求出直线AB解析式;
(2)借助(1)的结论,先建立PD与x的函数关系式,即可确定出最大值;
(3)借助(2)的结论,利用圆心到y轴的距离等于半径即可建立方程,解方程即可得出结论.

解答 解:(1)∵抛物线顶点坐标为点C(2,8),
∴设抛物线的解析式为y=a(x-2)2+8,
∵点A在抛物线上,
∴a(6-2)2+8=0,
∴a=-$\frac{1}{2}$,
∴抛物线的解析式为y=-$\frac{1}{2}$(x-2)2+8=-$\frac{1}{2}$x2+2x+6,
∴B(0,6),
∵A (6,0),
∴直线AB的解析式为y=-x+6;
(2)由(1)知,抛物线的解析式为y=-$\frac{1}{2}$x2+2x+6,直线AB的解析式为y=-x+6;
∵Q点作x轴,Q (x,0),
∴P(x,-$\frac{1}{2}$x2+2x+6),D(x,-x+6),
∴PD=|-$\frac{1}{2}$x2+2x+6-(-x+6)|=|-$\frac{1}{2}$x2+3x|,
∵Q (x,0)是线段OA上的一动点,
∴0≤x≤6,
∴PD=-$\frac{1}{2}$x2+3x=-$\frac{1}{2}$(x2-6x)=-$\frac{1}{2}$(x-3)2+$\frac{9}{2}$,
∴当x=3时,PD最大,最大值是$\frac{9}{2}$,
(3)由(2)知,P(x,-$\frac{1}{2}$x2+2x+6),D(x,-x+6),
∴以PD为直径的圆的圆心的横坐标为x,
由(2)知,PD=|-$\frac{1}{2}$x2+3x|,
∵以PD为直径的圆与y轴相切,
∴|x|=$\frac{1}{2}$|-$\frac{1}{2}$x2+3x|,
∴x=0(舍)或x=2或x=10,
∴Q(2,0)或(10,0).

点评 此题是二次函数综合题,主要考查了待定系数法,平行于坐标轴上的直线上两点间的距离,函数的极值,解绝对值方程,建立PD与x的函数关系式是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,OA=OB=OC=6,点G的线段OB上的一个动点,连接AG并延长BC于点D.
(1)当点G运动到何处时△ABD的面积为△ABC面积的$\frac{1}{3}$;
(2)在(1)的条件下,过点B作BE⊥AD,交AC于F,垂足为E,求点F的坐标;
(3)在(1)和(2)的条件下,在平面直角坐标系内是否存在点P,使△BFP为以边BF为直角边的等腰直角三角形?若存在,直接写出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于点C,点B的坐标为(-1,0),过x轴上一点E作EG⊥x轴交抛物线于点G,交直线AC于点F.
(1)直接写出点C的坐标(0,4);
(2)如图,当点A在x轴的正半轴上,且直线EG为抛物线的对称轴时,过C作CH⊥GE交GE于H点,若$\frac{FH}{FE}$=$\frac{3}{5}$,求抛物线的表达式;
(3)连接CG,当△CGF为等腰直角三角形时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是4$\sqrt{3}$-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,直角坐标系中,点A(0,a),点B(b,0),若a、b满足(a-b-8)2+|2a+b-4|=0,C是B点关于y轴的对称点.
(1)求出C点的坐标;
(2)如图1,动E点从B点出发,沿BA方向向A点匀速运动,同时,动点F以相同的速度,从C点出发,在AC延长线上沿AC方向运动,EF与BC交点为M,当E运动到A时,两点同时停止运动,在此过程中,EM与FM的大小关系是否不变?请说明理由;
(3)如图2,在(2)的条件下,过M作MN⊥EF交y轴于点N,N点的位置是否改变?若不改变,请求出N点的坐标,若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,P为边长为6的正方形ABCD的边BC上一动点(P与B、C不重合),Q在CD上,且CQ=BP,连接AP、BQ,将△BQC沿BQ所在的直线翻折得到△BQE,延长QE交BA的延长线于点F.
(1)试探究AP与BQ的数量与位置关系,并证明你的结论;
(2)当E是FQ的中点时,求BP的长;
(3)若BP=2PC,求QF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP于点D,交直线BC于点Q.

(1)如图1,当P在线段AC上时,求证:BP=AQ;
(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?成立(填“成立”或“不成立”)
(3)在(2)的条件下,当∠DBA=22.5°度时,存在AQ=2BD,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8,半径为$\sqrt{3}$的⊙M与射线BA相切,切点为N,且AN=3,将Rt△ABC绕点A顺时针旋转,设旋转角为α(0°≤α≤180°)
(1)当α为60°或120°时,AC和⊙M相切;
(2)当AC落在AN上时,设点B,C的对应点分别是点D,E.
①画出旋转后的Rt△ADE;(草图即可)
②Rt△ADE的直角边DE被⊙M截得的弦PQ的长为2$\sqrt{2}$;
③判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由;
(3)设点M与AC的距离为x,在旋转过程中,当边AC与⊙M有一个公共点时,直接写出x的取值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.在有理数-0.5、-5、$\frac{5}{3}$中,属于分数的共有2个.

查看答案和解析>>

同步练习册答案