1£®Èçͼ£¬Å×ÎïÏßy=-$\frac{1}{2}$x2+mx+2ÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬Å×ÎïÏߵĶԳÆÖáÖ±Ïßx=$\frac{3}{2}$½»xÖáÓÚµãD£®
£¨1£©ÇómµÄÖµ£»
£¨2£©ÔÚÅ×ÎïÏߵĶԳÆÖáÉÏÕÒ³öµãP£¬Ê¹¡÷PCDÊÇÒÔCDΪÑüµÄµÈÑüÈý½ÇÐΣ¬Ö±½Óд³öPµãµÄ×ø±ê£»
£¨3£©µãEÊÇÏ߶ÎBCÉϵÄÒ»¸ö¶¯µã£¬¹ýµãE×÷xÖáµÄ´¹ÏßÓëÅ×ÎïÏßÏཻÓÚµãF£¬ÓëxÖáÏཻÓÚµãH£¬Á¬½ÓCF¡¢BF¡¢OE£¬µ±ËıßÐÎCDBFµÄÃæ»ý×î´óʱ£¬ÇëÄã˵Ã÷ËıßÐÎOCFEµÄÐÎ×´£®

·ÖÎö £¨1£©¸ù¾Ý¶Ô³ÆÖṫʽ£¬¿ÉµÃMµÄÖµ£»
£¨2£©¸ù¾ÝµÈÑüÈý½ÇÐεĶ¨Ò壬¿ÉµÃPµã×ø±ê£»
£¨3£©¸ù¾ÝƽÐÐÓÚyÖáµÄÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊǽϴóµÄ×Ý×ø±ê¼õ½ÏСµÄ×Ý×ø±ê£¬¿ÉµÃEFµÄ³¤£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ¶þ´Îº¯Êý£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿ÉµÃnµÄÖµ£¬¸ù¾ÝƽÐÐËıßÐεÄÅж¨£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©¡ß¶Ô³ÆÖáÊÇÖ±Ïßx=$\frac{3}{2}$£¬
¡à-$\frac{m}{2¡Á£¨-\frac{1}{2}£©}$=$\frac{3}{2}$£¬
¡àm=$\frac{3}{2}$£»
£¨2£©Óɹ´¹É¶¨Àí£¬µÃ
CD=$\frac{5}{2}$£¬µ±CD=DP=$\frac{5}{2}$ʱ£¬P£¨$\frac{3}{2}$£¬$\frac{5}{2}$£©£¬£¨$\frac{3}{2}$£¬-$\frac{5}{2}$£©£¬
µ±CD=CPʱ£¬ÉèPµã×ø±êΪ£¨$\frac{3}{2}$£¬b£©£¬
¡à$\sqrt{£¨\frac{3}{2}£©^{2}+£¨b-2£©^{2}}$=$\frac{5}{2}$£¬
½âµÃb=4£¬P£¨$\frac{3}{2}$£¬4£©£¬
×ÛÉÏËùÊö£ºP1£¨$\frac{3}{2}$£¬$\frac{5}{2}$£©£¬P2£¨$\frac{3}{2}$£¬-$\frac{5}{2}$£©£¬P3£¨$\frac{3}{2}$£¬4£©£»
£¨3£©ËıßÐÎOCFEÊÇƽÐÐËıßÐΣ¬
ÓÉÅ×ÎïÏßy=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2£¬
Áîy=0£¬-$\frac{1}{2}$x2+$\frac{3}{2}$x+2=0£¬½âµÃx1=-1£¬x2=4£¬
¡àB£¨4£¬0£©£¬A£¨-1£¬0£©£¬
µ±x=0ʱ£¬y=2£¬¼´C£¨0£¬2£©£¬
ÉèBCµÄ½âÎöʽΪy=kx+b£¬°ÑB£¨4£¬0£©£¬C£¨0£¬2£©´úÈ룬µÃ
$\left\{\begin{array}{l}{4k+b=0}\\{b=2}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=2}\end{array}\right.$£¬
Ö±ÏßBC½âÎöʽΪy=-$\frac{1}{2}$x+2£®
µãFÔÚÅ×ÎïÏßÉÏ£¬ÉèFµÄ×ø±êΪ£¨n£¬-$\frac{1}{2}$n2+$\frac{3}{2}$n+2£©£¬
µãEÔÚBCÉÏ£¬EµãµÄ×ø±êΪ£¨n£¬-$\frac{1}{2}$n+2£©£¬
EF=FH-EH=-$\frac{1}{2}$n2+2n£¬
¡ßSËıßÐÎCDBF=S¡÷CDB+SCFB£¬
SCDB=$\frac{1}{2}$BD•CO=$\frac{1}{2}$¡Á£¨4-1.5£©¡Á2=$\frac{5}{2}$£¬SCFB=$\frac{1}{2}$EF•OB•OB=$\frac{1}{2}$¡Á4¡Á£¨-$\frac{1}{2}$n2+2n£©=-n2+4n£¬
SËıßÐÎCDBF=-n2+4n+$\frac{5}{2}$=-£¨n-2£©2+$\frac{13}{2}$£¬
µ±n=2ʱ£¬ËıßÐÎCDBFµÄÃæ»ý×î´ó£¬´ËʱEF=-$\frac{1}{2}$n2+2n=2£¬EH=-$\frac{1}{2}$n+2=1£¬OH=2£¬OE=$\sqrt{O{H}^{2}+E{H}^{2}}$=$\sqrt{5}$£®
¡ßOC=EF=2£¬OC¡ÎEF£¬
¡àËıßÐÎOCFEÊÇƽÐÐËıßÐΣ®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓõÈÑüÈý½ÇÐεĶ¨ÒåµÃ³öCD=DP£¬CD=CPÊǽâÌâ¹Ø¼ü£»ÀûÓÃÃæ»ýµÄºÍ²îµÃ³ö¶þ´Îº¯ÊýÊǽâÌâ¹Ø¼ü£¬ÓÖÀûÓÃÁËƽÐÐËıßÐεÄÅж¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¾ØÐξßÓжøÒ»°ãµÄƽÐÐËıßÐβ»Ò»¶¨¾ßÓеÄÌØÕ÷£¨¡¡¡¡£©
A£®¶Ô½ÇÏàµÈB£®¶Ô½ÇÏßÏàµÈC£®¶Ô½ÇÏß»¥Ïàƽ·ÖD£®¶Ô±ßÏàµÈ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬°´ÕÕÈýÊÓͼȷ¶¨¸Ã¼¸ºÎÌåµÄÈ«Ãæ»ýΪ£¨Í¼Öгߴ絥λ£ºcm£©£¨¡¡¡¡£©
A£®128¦Ðcm2B£®160¦Ðcm2C£®176¦Ðcm2D£®192¦Ðcm2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªµãMΪij·â±ÕͼÐα߽çÉÏÒ»¶¨µã£¬¶¯µãP´ÓµãM³ö·¢£¬ÑØÆä±ß½çÄæʱÕëÔ˶¯Ò»ÖÜ£¬ÉèµãP×ß¹ýµÄ·³ÌΪx£¬Ï߶ÎMPµÄ³¤Îªy£¬±íʾyÓëxµÄº¯Êý¹ØϵµÄͼÏó´óÖÂÈçͼËùʾ£¬Ôò¸Ã·â±ÕͼÐοÉÄÜÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÉèÔ²¡¢µÈÑüÖ±½ÇÈý½ÇÐΡ¢Õý·½Ðκ͵ÈÑüÈý½ÇÐα߽çÉϵÄÒ»¸ö¶¨µãΪQ£¨ÈçËĸöÑ¡ÏîÖеÄͼÐΣ©£¬¶¯µãP´ÓµãQ³ö·¢£¬ÔÚÆä±ß½çÉÏ°´Ë³Ê±Õë·½ÏòÔÈËÙÔ˶¯Ò»ÖܺóÓֻص½ÆðµãQ£®ÉèµãPÔ˶¯µÄʱ¼äÊÇt£¬µãPºÍµãQÖ®¼äµÄ¾àÀëÊÇd£¬ÈçͼÊÇdÓëtÖ®¼äº¯Êý¹ØϵµÄ´óÖÂͼÏó£¬Ôò¸ÃͼÐοÉÄÜÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬Ö±Ïßy=$\frac{1}{2}$x-2ÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãC£¬Å×ÎïÏßy=ax2+bx-2¾­¹ýA£¬B£¬C£¬µãB×ø±êΪ£¨-1£¬0£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãDÊÇÏ߶ÎACÉÏÒ»¸ö¶¯µã£¬DE¡ÍAC£¬½»Ö±ÏßACÏ·½µÄÅ×ÎïÏßÓÚµãE£¬EG¡ÍxÖáÓÚµãG£¬½»ACÓÚµãF£¬ÇëÇó³öDF³¤µÄ×î´óÖµ£»
£¨3£©ÉèÅ×ÎïÏ߶ԳÆÖáÓëxÖáÏཻÓÚµãH£¬µãPÊÇÉäÏßCHÉϵÄÒ»¸ö¶¯µã£¬µ±¡÷ABPÊÇÖ±½ÇÈý½ÇÐÎʱ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÎÒÃǶ¨Ò壺ÓÐÒ»×é¶Ô½ÇÏàµÈ¶øÁíÒ»×é¶Ô½Ç²»ÏàµÈµÄËıßÐνÐ×ö¡°µÈ¶Ô½ÇËıßÐΡ±£®
£¨1£©ÒÑÖª£ºËıßÐÎABCDÊÇ¡°µÈ¶Ô½ÇËıßÐΡ±£¬¡ÏA=70¡ã£¬¡ÏB=80¡ã£®Çó¡ÏC¡¢¡ÏDµÄ¶ÈÊý£®
£¨2£©Èçͼ1£¬ÔÚRt¡÷ACBÖУ¬¡ÏC=90¡ã£¬CDΪб±ßAB±ßÉϵÄÖÐÏߣ¬¹ýµãD×÷DE¡ÍCD½»ACÓÚµãE£¬ÇóÖ¤£ºËıßÐÎBCEDÊÇ¡°µÈ¶Ô½ÇËıßÐΡ±£®
£¨3£©Èçͼ2£¬ÔÚRt¡÷ACBÖУ¬¡ÏC=90¡ã£¬AC=4£¬BC=3£¬CDƽ·Ö¡ÏACB£¬µãEÔÚACÉÏ£¬ÇÒËıßÐÎCBDEΪ¡°µÈ¶Ô½ÇËıßÐΡ±£¬ÔòÏ߶ÎAEµÄ³¤Îª1»ò$\frac{25}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªµÚ1×éÊý¾Ý£º1£¬3£¬5£¬7µÄ·½²îΪS12£¬µÚ2×éÊý¾Ý£º52£¬54£¬56£¬58µÄ·½²îΪS22£¬µÚ3×éÊý¾Ý£º2016£¬2015£¬2014£¬2013µÄ·½²îΪS32£¬ÔòS12£¬S22£¬S32µÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©
A£®S32£¾S22£¾S12B£®S12=S22£¼S32C£®S12=S22£¾S32D£®S12=S22=S32

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁзÖÊýÖУ¬ÄÜ»¯ÎªÓÐÏÞСÊýµÄÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{8}$B£®$\frac{1}{9}$C£®$\frac{1}{12}$D£®$\frac{1}{15}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸